首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Protein-protein interactions (PPIs) play fundamental roles in nearly all biological processes. The systematic analysis of PPI networks can enable a great understanding of cellular organization, processes and function. In this paper, we investigate the problem of protein complex detection from noisy protein interaction data, i.e., finding the subsets of proteins that are closely coupled via protein interactions. However, protein complexes are likely to overlap and the interaction data are very noisy. It is a great challenge to effectively analyze the massive data for biologically meaningful protein complex detection.

Results

Many people try to solve the problem by using the traditional unsupervised graph clustering methods. Here, we stand from a different point of view, redefining the properties and features for protein complexes and designing a “semi-supervised” method to analyze the problem. In this paper, we utilize the neural network with the “semi-supervised” mechanism to detect the protein complexes. By retraining the neural network model recursively, we could find the optimized parameters for the model, in such a way we can successfully detect the protein complexes. The comparison results show that our algorithm could identify protein complexes that are missed by other methods. We also have shown that our method achieve better precision and recall rates for the identified protein complexes than other existing methods. In addition, the framework we proposed is easy to be extended in the future.

Conclusions

Using a weighted network to represent the protein interaction network is more appropriate than using a traditional unweighted network. In addition, integrating biological features and topological features to represent protein complexes is more meaningful than using dense subgraphs. Last, the “semi-supervised” learning model is a promising model to detect protein complexes with more biological and topological features available.
  相似文献   

2.

Background

Identifying protein complexes is crucial to understanding principles of cellular organization and functional mechanisms. As many evidences have indicated that the subgraphs with high density or with high modularity in PPI network usually correspond to protein complexes, protein complexes detection methods based on PPI network focused on subgraph's density or its modularity in PPI network. However, dense subgraphs may have low modularity and subgraph with high modularity may have low density, which results that protein complexes may be subgraphs with low modularity or with low density in the PPI network. As the density-based methods are difficult to mine protein complexes with low density, and the modularity-based methods are difficult to mine protein complexes with low modularity, both two methods have limitation for identifying protein complexes with various density and modularity.

Results

To identify protein complexes with various density and modularity, including those have low density but high modularity and those have low modularity but high density, we define a novel subgraph's fitness, f ρ , as f ρ = (density) ρ *(modularity)1-ρ, and propose a novel algorithm, named LF_PIN, to identify protein complexes by expanding seed edges to subgraphs with the local maximum fitness value. Experimental results of LF-PIN in S.cerevisiae show that compared with the results of fitness equal to density (ρ = 1) or equal to modularity (ρ = 0), the LF-PIN identifies known protein complexes more effectively when the fitness value is decided by both density and modularity (0<ρ<1). Compared with the results of seven competing protein complex detection methods (CMC, Core-Attachment, CPM, DPClus, HC-PIN, MCL, and NFC) in S.cerevisiae and E.coli, LF-PIN outperforms other seven methods in terms of matching with known complexes and functional enrichment. Moreover, LF-PIN has better performance in identifying protein complexes with low density or with low modularity.

Conclusions

By considering both the density and the modularity, LF-PIN outperforms other protein complexes detection methods that only consider density or modularity, especially in identifying known protein complexes with low density or low modularity.
  相似文献   

3.

Background  

Protein-protein interactions play essential roles in protein function determination and drug design. Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the performance for predicting protein interaction sites based on primary sequence alone.  相似文献   

4.

Background  

Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules.  相似文献   

5.
6.
Ou-Yang  Le  Yan  Hong  Zhang  Xiao-Fei 《BMC bioinformatics》2017,18(13):463-34

Background

The accurate identification of protein complexes is important for the understanding of cellular organization. Up to now, computational methods for protein complex detection are mostly focus on mining clusters from protein-protein interaction (PPI) networks. However, PPI data collected by high-throughput experimental techniques are known to be quite noisy. It is hard to achieve reliable prediction results by simply applying computational methods on PPI data. Behind protein interactions, there are protein domains that interact with each other. Therefore, based on domain-protein associations, the joint analysis of PPIs and domain-domain interactions (DDI) has the potential to obtain better performance in protein complex detection. As traditional computational methods are designed to detect protein complexes from a single PPI network, it is necessary to design a new algorithm that could effectively utilize the information inherent in multiple heterogeneous networks.

Results

In this paper, we introduce a novel multi-network clustering algorithm to detect protein complexes from multiple heterogeneous networks. Unlike existing protein complex identification algorithms that focus on the analysis of a single PPI network, our model can jointly exploit the information inherent in PPI and DDI data to achieve more reliable prediction results. Extensive experiment results on real-world data sets demonstrate that our method can predict protein complexes more accurately than other state-of-the-art protein complex identification algorithms.

Conclusions

In this work, we demonstrate that the joint analysis of PPI network and DDI network can help to improve the accuracy of protein complex detection.
  相似文献   

7.

Background  

Many integral membrane proteins, like their non-membrane counterparts, form either transient or permanent multi-subunit complexes in order to carry out their biochemical function. Computational methods that provide structural details of these interactions are needed since, despite their importance, relatively few structures of membrane protein complexes are available.  相似文献   

8.

Background  

Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations.  相似文献   

9.

Background  

How to detect protein complexes is an important and challenging task in post genomic era. As the increasing amount of protein-protein interaction (PPI) data are available, we are able to identify protein complexes from PPI networks. However, most of current studies detect protein complexes based solely on the observation that dense regions in PPI networks may correspond to protein complexes, but fail to consider the inherent organization within protein complexes.  相似文献   

10.

Background

Recently, large data sets of protein-protein interactions (PPI) which can be modeled as PPI networks are generated through high-throughput methods. And locally dense regions in PPI networks are very likely to be protein complexes. Since protein complexes play a key role in many biological processes, detecting protein complexes in PPI networks is one of important tasks in post-genomic era. However, PPI networks are often incomplete and noisy, which builds barriers to mining protein complexes.

Results

We propose a new and effective algorithm based on robustness to detect overlapping clusters as protein complexes in PPI networks. And in order to improve the accuracy of resulting clusters, our algorithm tries to reduce bad effects brought by noise in PPI networks. And in our algorithm, each new cluster begins from a seed and is expanded through adding qualified nodes from the cluster's neighbourhood nodes. Besides, in our algorithm, a new distance measurement method between a cluster K and a node in the neighbours of K is proposed as well. The performance of our algorithm is evaluated by applying it on two PPI networks which are Gavin network and Database of Interacting Proteins (DIP). The results show that our algorithm is better than Markov clustering algorithm (MCL), Clique Percolation method (CPM) and core-attachment based method (CoAch) in terms of F-measure, co-localization and Gene Ontology (GO) semantic similarity.

Conclusions

Our algorithm detects locally dense regions or clusters as protein complexes. The results show that protein complexes generated by our algorithm have better quality than those generated by some previous classic methods. Therefore, our algorithm is effective and useful.
  相似文献   

11.

Background  

The idea that the assembly of protein complexes is linked with protein disorder has been inferred from a few large complexes, such as the viral capsid or bacterial flagellar system, only. The relationship, which suggests that larger complexes have more disorder, has never been systematically tested. The recent high-throughput analyses of protein-protein interactions and protein complexes in the cell generated data that enable to address this issue by bioinformatic means.  相似文献   

12.

Background

Protein complexes play an important role in biological processes. Recent developments in experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI) datasets, which provide abundant data for computational approaches to the prediction of protein complexes. However, the precision of protein complex prediction still needs to be improved due to the incompletion and noise in PPI networks.

Results

There exist complex and diverse relationships among proteins after integrating multiple sources of biological information. Considering that the influences of different types of interactions are not the same weight for protein complex prediction, we construct a multi-relationship protein interaction network (MPIN) by integrating PPI network topology with gene ontology annotation information. Then, we design a novel algorithm named MINE (identifying protein complexes based on Multi-relationship protein Interaction NEtwork) to predict protein complexes with high cohesion and low coupling from MPIN.

Conclusions

The experiments on yeast data show that MINE outperforms the current methods in terms of both accuracy and statistical significance.
  相似文献   

13.

Background  

The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger.  相似文献   

14.

Background  

Gene set analysis is moving towards considering pathway topology as a crucial feature. Pathway elements are complex entities such as protein complexes, gene family members and chemical compounds. The conversion of pathway topology to a gene/protein networks (where nodes are a simple element like a gene/protein) is a critical and challenging task that enables topology-based gene set analyses.  相似文献   

15.

Background  

SMC proteins are key components of several protein complexes that perform vital tasks in different chromosome dynamics. Bacterial SMC forms a complex with ScpA and ScpB that is essential for chromosome arrangement and segregation. The complex localizes to discrete centres on the nucleoids that during most of the time of the cell cycle localize in a bipolar manner. The complex binds to DNA and condenses DNA in an as yet unknown manner.  相似文献   

16.

Background  

In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes.  相似文献   

17.

Background  

Functional gene modules and protein complexes are being sought from combinations of gene expression and protein-protein interaction data with various clustering-type methods. Central features missing from most of these methods are handling of uncertainty in both protein interaction and gene expression measurements, and in particular capability of modeling overlapping clusters. It would make sense to assume that proteins may play different roles in different functional modules, and the roles are evidenced in their interactions.  相似文献   

18.

Background  

After complete sequencing of a number of genomes the focus has now turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, mass spectrometry etc. are producing huge data sets of protein-protein interactions which can be portrayed as networks, and one of the burning issues is to find protein complexes in such networks. The enormous size of protein-protein interaction (PPI) networks warrants development of efficient computational methods for extraction of significant complexes.  相似文献   

19.

Background

We introduce a protein docking refinement method that accepts complexes consisting of any number of monomeric units. The method uses a scoring function based on a tight coupling between evolutionary conservation, geometry and physico-chemical interactions. Understanding the role of protein complexes in the basic biology of organisms heavily relies on the detection of protein complexes and their structures. Different computational docking methods are developed for this purpose, however, these methods are often not accurate and their results need to be further refined to improve the geometry and the energy of the resulting complexes. Also, despite the fact that complexes in nature often have more than two monomers, most docking methods focus on dimers since the computational complexity increases exponentially due to the addition of monomeric units.

Results

Our results show that the refinement scheme can efficiently handle complexes with more than two monomers by biasing the results towards complexes with native interactions, filtering out false positive results. Our refined complexes have better IRMSDs with respect to the known complexes and lower energies than those initial docked structures.

Conclusions

Evolutionary conservation information allows us to bias our results towards possible functional interfaces, and the probabilistic selection scheme helps us to escape local energy minima. We aim to incorporate our refinement method in a larger framework which also enables docking of multimeric complexes given only monomeric structures.
  相似文献   

20.

Background

Understanding protein complexes is important for understanding the science of cellular organization and function. Many computational methods have been developed to identify protein complexes from experimentally obtained protein-protein interaction (PPI) networks. However, interaction information obtained experimentally can be unreliable and incomplete. Reconstructing these PPI networks with PPI evidences from other sources can improve protein complex identification.

Results

We combined PPI information from 6 different sources and obtained a reconstructed PPI network for yeast through machine learning. Some popular protein complex identification methods were then applied to detect yeast protein complexes using the new PPI networks. Our evaluation indicates that protein complex identification algorithms using the reconstructed PPI network significantly outperform ones on experimentally verified PPI networks.

Conclusions

We conclude that incorporating PPI information from other sources can improve the effectiveness of protein complex identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号