首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Night-time stomatal opening in C3 plants may result in significant water loss when no carbon gain is possible. The objective of this study was to determine if endogenous patterns of night-time stomatal opening, as reflected in leaf conductance, in Vicia faba are affected by photosynthetic conditions the previous day. Reducing photosynthesis with low light or low CO2 resulted in reduced night-time stomatal opening the following night, irrespective of the effects on daytime stomatal conductance. Likewise, increasing photosynthesis with enriched CO2 levels resulted in increased night-time stomatal opening the following night. Reduced night-time stomatal opening was not the result of an inability to regulate stomatal aperture as leaves with reduced night-time stomatal opening were capable of greater night-time opening when exposed to low CO2. After acclimating plants to long or short days, it was found that night-time leaf conductance was greater in plants acclimated to short days, and associated with greater leaf starch and nitrate accumulation, both of which may affect night-time guard cell osmotic potential. Direct measurement of guard cell contents during endogenous night-time stomatal opening will help identify the mechanism of the effect of daytime photosynthesis on subsequent night-time stomatal regulation.  相似文献   

2.
Representation of stomatal physiology in models of plant-atmosphere gas exchange is minimal, and direct application of process-based models is limited by difficulty of parameter estimation. We derived simple models of stomatal conductance from a recent process-based model, and cross-validated them against measurements of sap flux (176-365 d in length) in 36 individual trees of two age classes for two Eucalyptus species across seven sites in the mountains of southeastern Australia. The derived models - which are driven by irradiance and evaporative demand and have two to four parameters that represent sums and products of biophysical parameters in the process model - reproduced a median 83-89% of observed variance in half-hourly and diurnally averaged sap flux, and performed similarly whether fitted using a random sample of all data or using 1 month of data from spring or autumn. Our simple models are an advance in predicting plant water use because their parameters are transparently related to reduced processes and properties, enabling easy accommodation of improved knowledge about how those parameters respond to environmental change and differ among species.  相似文献   

3.
Species share homologous genes to a large extent, but it isnot yet known to what degree the same loci have been targetsfor natural selection in different species. Natural variationin flowering time is determined to a large degree by 2 genes,FLOWERING LOCUS C and FRIGIDA, in Arabidopsis thaliana. Here,we examine whether FRIGIDA has a role in differences in floweringtime between and within natural populations of Arabidopsis lyrata,a close outcrossing perennial relative of A. thaliana. We found2 FRIGIDA sequence variants producing potentially functionalproteins but with a length difference of 14 amino acids. Thesevariants conferred a 15-day difference in flowering time inan association experiment in 2 Scandinavian populations. Thedifference in flowering time between alleles was confirmed withtransformation to A. thaliana. Because the north European late-floweringpopulations harbor both late- and early sequence variants atintermediate frequencies and the late-flowering variant is mostfrequent in the southern early flowering European population,other genetic factors must be responsible for the floweringtime differences between the populations. The length polymorphismoccurs at high frequencies also in several North American populations.The occurrence of functional variants at intermediate frequenciesin several populations suggests that the variation may be maintainedby balancing selection. This is in contrast to A. thaliana,where independent loss-of-function mutations at the FRIGIDAgene are responsible for differences between populations andlocal adaptation.  相似文献   

4.
5.
植物蒸腾导度是表征土壤-植物-大气连续体(SPAC)中植物-大气间水汽传导过程、反映植物水分调控能力的一类重要变量,常见有冠层导度(Gc)、冠层气孔导度(Gs)与叶片气孔导度(gs),明确三者在反映冠层蒸腾过程时的异同或关联性对于理解植物水分利用机制具有重要意义。本研究基于对黄土高原果园苹果树生长季内树干液流(Js)及环境因子的连续观测,计算了GcGs及脱耦联系数(Ω)等变量,并与短期连续观测的叶片气孔导度(gs)比较,分析了GcGsgs在反映冠层蒸腾特征方面的异同及其关系。结果表明,日变化过程中Gsgs呈"单峰"型曲线,而Gc则呈"先增后减,午后抬升"的"双峰"型曲线。gsGs存在较紧密的线性关系(R2=0.80),但与Gc的线性关系较弱(R2=0.02)。GcGs均随大气水汽压亏缺(VPD)的变化呈现确定的规律,其中,上边界函数呈递减的对数函数关系,平均值则符合先增后减的Log-Normal函数关系(R2>0.95),拐点对应的VPD值分别为1.33和1.16 kPa。在一日内,Gs对VPD变化的响应过程与gs对VPDL (基于叶片温度计算的水汽压亏缺)变化的响应过程总体一致,其一致性高于Gc对VPD变化的响应。整个生长季(4-10月)中果树的Ω平均值为0.12,随着Ω递减,GcGs的线性相关性愈趋紧密,其斜率呈递增趋势,Gc越来越趋近于Gs。研究结果表明,在北方地区,基于树干液流的监测能较准确的推导整株并估算林分的冠层蒸腾导度。与实测gs的变化过程比较,GsGc具有更高的一致性,Gs可以作为描述苹果树水分利用过程响应大气驱动的更为恰当的变量。  相似文献   

6.
Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of this information relates to A/gs with the remaining one-third related to A/gi. Using data for three well-studied species we demonstrate that at common WUE, delta may vary by up to 3 per thousand. This is as large or larger than is commonly reported in many interspecific comparisons of delta, and adds to previous warnings about simplistic interpretations of WUE based on delta. A priority for future research should be elucidation of relationships between gi and gs and how these vary in response to environmental conditions (e.g. soil water, leaf-to-air vapour pressure deficit, temperature) and among species.  相似文献   

7.
Circadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.  相似文献   

8.
BACKGROUNDS AND AIMS: Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. METHODS: Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. KEY RESULTS: Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.  相似文献   

9.
Decreased hydraulic conductance in plants at elevated carbon dioxide   总被引:3,自引:2,他引:1  
Previous work indicated that long-term exposure to elevated carbon dioxide levels can reduce hydraulic conductance in some species, but the basis of the response was not determined. In this study, hydraulic conductance was measured at concentrations of both 350 and 700 cm3 m–3 carbon dioxide for plants grown at both concentrations, to determine the reversibility of the response. In Zea mays and Amaranthus hypochondriacus , exposure to the higher carbon dioxide concentration for several hours reduced whole-plant transpiration rate by 22–40%, without any consistent change in leaf water potential, indicating reversible reductions in hydraulic conductance at elevated carbon dioxide levels. Hydraulic conductance in these species grown at both carbon dioxide concentrations responded similarly to measurement concentration of carbon dioxide, indicating that the response was reversible. In Glycine max , which in earlier work had shown a long-term decrease in hydraulic conductance at elevated carbon dioxide levels, and in Abutilon theophrasti , no short-term changes in hydraulic conductance with measurement concentration of carbon dioxide were found, despite lower transpiration rates at elevated carbon dioxide. In G. max and Medicago sativa , growth at high dew-point temperature reduced transpiration rate and decreased hydraulic conductance. The results indicate that both reversible and irreversible decreases in hydraulic conductance can occur at elevated carbon dioxide concentrations, and that both could be responses to reduced transpiration rate, rather than to carbon dioxide concentration itself.  相似文献   

10.
This paper describes a new approach to the calibration of thermal infrared measurements of leaf temperature for the estimation of stomatal conductance and illustrates its application to thermal imaging of plant leaves. The approach is based on a simple reformulation of the leaf energy balance equation that makes use of temperature measurements on reference surfaces of known conductance to water vapour. The use of reference surfaces is an alternative to the accurate measurement of all components of the leaf energy balance and is of potentially wide application in studies of stomatal behaviour. The resolution of the technique when applied to thermal images is evaluated and some results of using the approach in the laboratory for the study of stomatal behaviour in leaves of Phaseolus vulgaris L. are presented. Conductances calculated from infrared measurements were well correlated with estimates obtained using a diffusion porometer.  相似文献   

11.
蒸腾导度模型是衡量冠层-大气界面水汽输出的重要阻力模型,研究其特征及对环境因子的响应,为揭示森林冠层-大气界面水汽输出阻力机制提供理论依据。以首都圈森林生态系统定位观测研究站侧柏林为研究对象,采用TDP热探针法测定侧柏林树干液流密度,同步监测光合有效辐射、饱和水汽压差、气温、风速等主要环境因子,分析冠层导度和空气动力学导度的动态变化,构建冠层-大气蒸腾导度模型并模拟,明确冠层-大气蒸腾导度对各环境因子的响应关系。结果表明:蒸腾导度季节变化表现为非生长季与冠层导度趋势一致,生长季与空气动力学导度趋势一致,全年均为单峰趋势。冬季蒸腾导度与冠层导度保持较稳定差值(45 mol m^(-2 )s-1左右),其他季节蒸腾导度与冠层导度、空气动力学导度的最大差值,均在各季节冠层导度、空气动力学导度的峰值水平。全年日均蒸腾导度冬季最大(86.92 mol m^(-2 )s-1),其他季节较小且稳定(40—50 mol m^(-2 )s-1之间)。在非生长季各环境因子对蒸腾导度的影响与对冠层导度的影响基本一致,温度为主要影响因子(r=-0.198),其他环境因子影响较小(r<0.1);在生长季中风速为主要影响因子(r=0.488),光合有效辐射(r=0.228)和饱和水汽压差(r=-0.299)的影响明显升高,温度的影响降低(r=0.114)。蒸腾导度模型较好的模拟了冠层-大气界面侧柏蒸腾不同季节的变化规律,阐明了各环境因子和冠层导度、空气动力学导度对蒸腾导度的影响机制,证实在生长季应重视空气动力学导度对蒸腾的影响。  相似文献   

12.
A system to study the basis of high temperature-induced floral bud abortion using naturally occurring variation for heat-tolerance of floral development among Arabidopsis thaliana (L.) Heynh. wild-collected accessions is described. High temperature-induced floral bud abortion was dependent on both temperature and duration of exposure. Normalizing high temperature exposures to degree-hours (°C-h) above 33 °C indicated that abortion of flower buds increased as exposure increased between 200 and 300 °C-h above 33 °C and exposures > 300 °C-h above 33 °C resulted in abortion of the entire primary inflorescence. Thirteen wild-collected Arabidopsis accessions representing a latitudinal gradient were screened for variation in high temperature-induced floral bud abortion, and Col-0 and No-0 were selected as models for heat-tolerance and -sensitivity for flower development, respectively. No-0 flower buds were heat-sensitive across a wider range of developmental stages (stages 9–12, compared to stage 12 for Col-0 flower buds). Exposing the inflorescence alone to high temperature was sufficient to induce floral bud abortion, and Col-0 and No-0 photosynthetic rates were similar during high temperature exposure and recovery, indicating that high temperature induced floral abortion is not simply due to reductions in carbon assimilation under high temperatures. Determining that exposing floral buds alone to high temperature is sufficient to induce abortion and identifying the stages of floral development sensitive to high temperature-induced abortion will aid in identifying the developmental events subject to disruption under high temperatures.  相似文献   

13.
BACKGROUND AND AIMS: Estimates of the amount of nuclear DNA of Arabidopsis thaliana, known to be among the lowest within angiosperms, vary considerably. This study aimed to determine genome size of a range of accessions from throughout the entire Eurasian range of the species. METHODS: Twenty accessions from all over Europe and one from Japan were examined using flow cytometry. KEY RESULTS: Significant differences in mean C-values were detected over a 1.1-fold range. Mean haploid (1C) genome size was 0.215 pg (211 Mbp) for all analysed accessions. Two accessions were tetraploid. CONCLUSIONS: A closer investigation of the DNA fractions involved in intraspecific genome size differences in this experimentally accessible species may provide information on the factors involved in stability and evolution of genome sizes.  相似文献   

14.
Evidence is building that stomatal conductance to water vapour (g(s)) can be quite high in the dark in some species. However, it is unclear whether nocturnal opening reflects a mechanistic limitation (i.e. an inability to close at night) or an adaptive response (i.e. promoting water loss for reasons unrelated to carbon gain). Further, it is unclear if stomatal responses to leaf-air vapour pressure difference (D) persist in the dark. We investigated nocturnal stomatal behaviour in castor bean (Ricinus communis L.) by measuring gas exchange and stomatal responses to D in the light and in the dark. Results were compared among eight growth environments [two levels for each of three treatment variables: air saturation deficit (D(a)), light and water availability]. In most plants, stomata remained open and sensitive to D at night. g(s) was typically lower at night than in the day, whereas leaf osmotic pressure (Pi) was higher at night. In well-watered plants grown at low D(a), stomata were less sensitive to D in the dark than in the light, but the reverse was found for plants grown at high D(a). Stomata of droughted plants were less sensitive to D in the dark than in the light regardless of growth D(a). Drought also reduced g(s) and elevated Pi in both the light and the dark, but had variable effects on stomatal sensitivity to D. These results are interpreted with the aid of models of stomatal conductance.  相似文献   

15.
16.

Background and Aims

Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis.

Methods

Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed.

Key Results and Conclusions

Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development.  相似文献   

17.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

18.
冬小麦叶片气孔导度模型水分响应函数的参数化   总被引:2,自引:0,他引:2       下载免费PDF全文
植物气孔导度模型的水分响应函数用来模拟水分胁迫对气孔导度的影响过程, 是模拟缺水环境下植物与大气间水、碳交换过程的关键算法。水分响应函数包括空气湿度响应函数和土壤湿度(或植物水势)响应函数, 该研究基于田间实验观测, 分析了冬小麦(Triticum aestivum)叶片气孔导度对不同空气饱和差和不同土壤体积含水量或叶水势的响应规律。一个土壤水分梯度的田间处理在中国科学院禹城综合试验站实施, 不同水分胁迫下的冬小麦叶片气体交换过程和气孔导度以及其他的温湿度数据被观测, 同时观测了土壤含水量和叶水势。实验数据表明, 冬小麦叶片气孔导度对空气饱和差的响应呈现双曲线规律, 变化趋势显示大约1 kPa空气饱和差是一个有用的阈值, 在小于1 kPa时, 冬小麦气孔导度对空气饱和差变化反应敏感, 而大于1 kPa后则反应缓慢; 分析土壤体积含水量与中午叶片气孔导度的关系发现, 中午叶片气孔导度随土壤含水量增加大致呈现线性增加趋势, 但在平均土壤体积含水量大于大约25%以后, 气孔导度不再明显增加, 而是维持在较高导度值上下波动; 冬小麦中午叶片水势与相应的气孔导度之间, 随着叶水势的增加, 气孔导度呈现增加趋势。根据冬小麦气孔导度对空气湿度、土壤湿度和叶水势的响应规律, 研究分别采用双曲线和幂指数形式拟合了水汽响应函数, 用三段线性方程拟合了土壤湿度响应函数和植物水势响应函数, 得到的参数可以为模型模拟冬小麦的各类水、热、碳交换过程采用。  相似文献   

19.
Functional trait variation within and across populations can strongly influence population, community, and ecosystem processes, but the relative contributions of genetic vs. environmental factors to this variation are often not clear, potentially complicating conservation and restoration efforts. For example, local adaptation, a particular type of genetic by environmental (G*E) interaction in which the fitness of a population in its own habitat is greater than in other habitats, is often invoked in management practices, even in the absence of supporting evidence. Despite increasing attention to the potential for G*E interactions, few studies have tested multiple populations and environments simultaneously, limiting our understanding of the spatial consistency in patterns of adaptive genetic variation. In addition, few studies explicitly differentiate adaptation in response to predation from other biological and environmental factors. We conducted a reciprocal transplant experiment of first‐generation eastern oyster (Crassostrea virginica) juveniles from six populations across three field sites spanning 1000 km in the southeastern Atlantic Bight in both the presence and absence of predation to test for G*E variation in this economically valuable and ecologically important species. We documented significant G*E variation in survival and growth, yet there was no evidence for local adaptation. Condition varied across oyster cohorts: Offspring of northern populations had better condition than offspring from the center of our region. Oyster populations in the southeastern Atlantic Bight differ in juvenile survival, growth, and condition, yet offspring from local broodstock do not have higher survival or growth than those from farther away. In the absence of population‐specific performance information, oyster restoration and aquaculture may benefit from incorporating multiple populations into their practices.  相似文献   

20.
叶片气孔是植物进行水汽交换的通道, 影响着植物的蒸腾和光合作用。然而叶片气孔行为受环境条件和树种类型的影响, 不同树种冠层气孔导度对环境因子响应的差异性, 以及在生长季不同时期叶片气孔对冠层蒸腾的调节作用是否会发生改变, 仍不清楚。该研究目的是通过探究各环境因子对不同树种冠层气孔导度的相对贡献率以及叶片气孔对冠层蒸腾的调节作用, 为深入了解植物水分利用状况和山区森林经营提供参考依据。于2018年生长季以北京八达岭国家森林公园内的58年生油松(Pinus tabuliformis)和39年生元宝槭(Acer truncatum)为研究对象, 利用热扩散技术对其树干液流进行连续监测, 并同步监测环境因子。利用彭曼公式计算冠层气孔导度(Gs)。主要结果: (1)油松和元宝槭日间Gs在日、月时间尺度上存在明显差异。5-7月油松和元宝槭日动态Gs均随饱和水汽压差(VPD)和太阳辐射(GR)的增加呈上升趋势, 上升持续时间比8月和9月长; 在月尺度上, 随着VPDGR的降低和土壤湿度(VWC)的升高, Gs从5月到9月整体上升。(2)利用增强回归树法分析得到VWCVPDGs的贡献率最大, 其次是GR、气温和风速。VWCVPD对油松Gs的贡献率分别为66.4%和17.4%, 对元宝槭Gs的贡献率分别为54.8%和21.0%。(3)油松和元宝槭的dGs/dlnVPD值与参考冠层气孔导度之间的斜率均显著高于0.6, 气孔调节作用相对较强。综上所述, 气孔对环境因子的响应在树种以及生长季不同时期之间存在差异, 为防止水分过度散失, 两树种在不同土壤水分条件下均通过严格的气孔调节控制蒸腾量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号