首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In phylogenetic systematics a problem of great practical and theoretical interest is to construct one or more large phylogenies (evolutionary trees), i.e., supertrees, from a given set of small phylogenies with overlapping sets of leaf labels. Although the methods being used to solve this problem are usually given plausible biological or theoretical justifications, occasionally it is possible to see that the result of a supertree method (SM) is explosive, and therefore logically meaningless, in the sense that it has been inferred from logical propositions that are contradictory. This paper presents the basic ideas and issues of how explosions affect the inference of rooted trees by SMs. We define the relevant concepts, give examples, and show how sometimes it is possible to identify hot spots in the input from which an SM may make explosive inferences that cannot be logically justified.  相似文献   

2.
Molecular data are widely used to reconstruct phylogenetic relationships among species, and these phylogenies are often used as the basis for inferences about the history of evolutionary change in other nonmolecular characters. This approach is an appropriate and powerful one in many circumstances. But when several lineages diverge over a relatively short period of time, the assumption that a molecular (gene) tree will always be a valid basis for such inferences may not hold. Empirical evidence from humans, nonhuman primates, and other mammals indicates that the relationships among molecular divergence, morphological differentiation, and the origin of reproductive isolation between diverging lineages are complex. The simple dichotomously branching trees that result from molecular systematic studies of Homo, Gorilla, and Pan may be a misleading basis for reconstructions of evolutionary change in nonmolecular characters. © 1994 Wiley-Liss, Inc.  相似文献   

3.

Background  

The shape of phylogenetic trees has been used to make inferences about the evolutionary process by comparing the shapes of actual phylogenies with those expected under simple models of the speciation process. Previous studies have focused on speciation events, but gene duplication is another lineage splitting event, analogous to speciation, and gene loss or deletion is analogous to extinction. Measures of the shape of gene family phylogenies can thus be used to investigate the processes of gene duplication and loss. We make the first systematic attempt to use tree shape to study gene duplication using human gene phylogenies.  相似文献   

4.
The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history.
“You know, a tree is a tree.  How many more do you need to look at?”–Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966
The following article addresses a period in life most removed from life’s origins compared with other articles in this collection. The article discusses an advanced form of life that seems to have lived on the order of 3.5–4.0 billion years ago, around the time when life as we know it began to diversify in a Darwinian sense. The life from this geological period is located deep within an illustrated taxonomic tree of life. The hope is that by understanding how early life evolved, we can better understand how life originated. In this sense, the article attempts to travel backwards in time, starting from modern organisms, to understand life’s origin.The Darwinian concept of evolution suggests that all modern life shares a single common ancestor, often referred to as the last universal common ancestor (LUCA). Throughout evolutionary history, this ancestor has for the most part generated descendants as successive bifurcations in a tree-like manner. This so called Tree of Life, and phylogenetics in general provides much of the framework for the field of molecular evolution. Taxonomic trees allow us to better understand relationships and commonalities shared by life. For instance, a tree may tell us whether a trait or phenotype shared between two organisms is the result of shared-common ancestry (termed homologous traits) or whether the trait has evolved multiple times independent of ancestry (analogous traits such as wings).Taxonomic trees can be built using diverse sources of information. These can include morphological and phenotypic data at the macro-level down to DNA and protein sequence data at the micro-level. Ideally, trees built from multiple sources of input have identical taxonomic relationships and branching patterns, and such trees are said to be congruent. In practice, however, trees built from morphological data (say, presence or absence of wings) are often different than a tree built from molecular data (DNA or protein sequences). This requires the biologist to determine which of the two data sets is misleading and/or which taxonomic tree-building algorithm is most appropriate to use for a particular data set. Such an artform is common in the field of molecular evolution because rarely are trees congruent when built from two sources of input data.In light of this fact, we have provided the quote at the beginning of this article as a reflection about the field of molecular evolution and its interpretations of taxonomic trees. Although Reagan was not speaking about taxonomic trees in his quote, the same sort of disconnect exists between evolutionary biologists and molecular biologists (Woese and Goldenfeld 2009), as it did between conservationists and Ronald Reagan. A molecular biologist may be inclined to say that once you have seen one phylogenetic tree, you have seen them all. And in fairness, there is some validity to such a notion because historically a phylogenetic tree could not help a molecular biologist to better describe their system. An evolutionary biologist, however, will argue that individual trees have nuances that can dramatically alter our interpretation of evolutionary processes.We intend to show in this article that not all (taxonomic) trees look similar and describe identical evolutionary scenarios. We will discuss how our concept of the Tree of Life has changed over the past couple of decades, how trees can be interpreted, and what a tree can tell us about early life. In particular, the article will focus on the temperature conditions of early life because this topic has received much attention over the past few years as a direct result of improved DNA sequencing technology and a better understanding of molecular evolutionary processes. We will also describe how trees can be used to guide laboratory experiments in our attempt to understand ancient life. Lastly, we will discuss how phylogenetic trees will serve as the foundation for an “evolutionary synthetic biology” that should allow us to better understand the evolution of cellular pathways, macromolecular machines such as the ribosome, and other emergent properties of early life.  相似文献   

5.
Maximum likelihood (ML) is a widely used criterion for selecting optimal evolutionary trees. However, the nature of the likelihood surface for trees is still not sufficiently understood, especially with regard to the frequency of multiple optima. Here, we initiate an analytic study for identifying sequences that generate multiple optima. We concentrate on the problem of optimizing edge weights for a given tree or trees (as opposed to searching through the space of all trees). We report a new approach to computing ML directly, which we have used to find large families of sequences that have multiple optima, including sequences with a continuum of optimal points. Such data sets are best supported by different (two or more) phylogenies that vary significantly in their timings of evolutionary events. Some standard biological processes can lead to data with multiple optima, and consequently the field needs further investigation. Our results imply that hill-climbing techniques as currently implemented in various software packages cannot guarantee that one will find the global ML point, even if it is unique.  相似文献   

6.
Phylogenies, or evolutionary trees, are fundamental to biology. Systematists have laboured since the time of Darwin to discover the tree of life. Recent developments in systematics, such as cladistics and molecular sequencing, have led practitioners to believe that their phylogenies are more testable now than equivalent efforts from the 1960s or earlier. Whole trees, and nodes within trees, may be assessed for their robustness. However, these quantitative approaches cannot be used to demonstrate that one tree is more likely to be correct than another. Congruence assessments may help. Comparison of a sample of 1000 published trees with an essentially independent standard (dates of origin of groups in geological time) shows that the order of branching has improved slightly, but the disparity between estimated times of origination from phylogeny and stratigraphy has, if anything, become worse. Controlled comparisons of phylogenies of four major groups (Agnatha, Sarcopterygii, Sauria and Mammalia) do not show uniform improvement, or decline, of fit to stratigraphy through the twentieth century. Nor do morphological or molecular trees differ uniformly in their performance.  相似文献   

7.
The statistical estimation of phylogenies is always associated with uncertainty, and accommodating this uncertainty is an important component of modern phylogenetic comparative analysis. The birth–death polytomy resolver is a method of accounting for phylogenetic uncertainty that places missing (unsampled) taxa onto phylogenetic trees, using taxonomic information alone. Recent studies of birds and mammals have used this approach to generate pseudoposterior distributions of phylogenetic trees that are complete at the species level, even in the absence of genetic data for many species. Many researchers have used these distributions of phylogenies for downstream evolutionary analyses that involve inferences on phenotypic evolution, geography, and community assembly. I demonstrate that the use of phylogenies constructed in this fashion is inappropriate for many questions involving traits. Because species are placed on trees at random with respect to trait values, the birth–death polytomy resolver breaks down natural patterns of trait phylogenetic structure. Inferences based on these trees are predictably and often drastically biased in a direction that depends on the underlying (true) pattern of phylogenetic structure in traits. I illustrate the severity of the phenomenon for both continuous and discrete traits using examples from a global bird phylogeny.  相似文献   

8.
Although long-branch attraction (LBA) is frequently cited as the cause of anomalous phylogenetic groupings, few examples of LBA involving real sequence data are known. We have found several cases of probable LBA by analyzing subsamples from an alignment of 18S rDNA sequences for 133 metazoans. In one example, maximum parsimony analysis of sequences from two rotifers, a ctenophore, and a polychaete annelid resulted in strong support for a tree grouping two "long-branch taxa" (a rotifer and the ctenophore). Maximum-likelihood analysis of the same sequences yielded strong support for a more biologically reasonable "rotifer monophyly" tree. Attempts to break up long branches for problematic subsamples through increased taxon sampling reduced, but did not eliminate, LBA problems. Exhaustive analyses of all quartets for a subset of 50 sequences were performed in order to compare the performance of maximum likelihood, equal-weights parsimony, and two additional variants of parsimony; these methods do differ substantially in their rates of failure to recover trees consistent with well established, but highly unresolved phylogenies. Power analyses using simulations suggest that some incorrect inferences by maximum parsimony are due to statistical inconsistency and that when estimates of central branch lengths for certain quartets are very low, maximum-likelihood analyses have difficulty recovering accepted phylogenies even with large amounts of data. These examples demonstrate that LBA problems can occur in real data sets, and they provide an opportunity to investigate causes of incorrect inferences.  相似文献   

9.

Background  

Biology has increasingly recognized the necessity to build and utilize larger phylogenies to address broad evolutionary questions. Large phylogenies have facilitated the discovery of differential rates of molecular evolution between trees and herbs. They have helped us understand the diversification patterns of mammals as well as the patterns of seed evolution. In addition to these broad evolutionary questions there is increasing awareness of the importance of large phylogenies for addressing conservation issues such as biodiversity hotspots and response to global change. Two major classes of methods have been employed to accomplish the large tree-building task: supertrees and supermatrices. Although these methods are continually being developed, they have yet to be made fully accessible to comparative biologists making extremely large trees rare.  相似文献   

10.
Phylogenies involving nonmodel species are based on a few genes, mostly chosen following historical or practical criteria. Because gene trees are sometimes incongruent with species trees, the resulting phylogenies may not accurately reflect the evolutionary relationships among species. The increase in availability of genome sequences now provides large numbers of genes that could be used for building phylogenies. However, for practical reasons only a few genes can be sequenced for a wide range of species. Here we asked whether we can identify a few genes, among the single-copy genes common to most fungal genomes, that are sufficient for recovering accurate and well-supported phylogenies. Fungi represent a model group for phylogenomics because many complete fungal genomes are available. An automated procedure was developed to extract single-copy orthologous genes from complete fungal genomes using a Markov Clustering Algorithm (Tribe-MCL). Using 21 complete, publicly available fungal genomes with reliable protein predictions, 246 single-copy orthologous gene clusters were identified. We inferred the maximum likelihood trees using the individual orthologous sequences and constructed a reference tree from concatenated protein alignments. The topologies of the individual gene trees were compared to that of the reference tree using three different methods. The performance of individual genes in recovering the reference tree was highly variable. Gene size and the number of variable sites were highly correlated and significantly affected the performance of the genes, but the average substitution rate did not. Two genes recovered exactly the same topology as the reference tree, and when concatenated provided high bootstrap values. The genes typically used for fungal phylogenies did not perform well, which suggests that current fungal phylogenies based on these genes may not accurately reflect the evolutionary relationships among species. Analyses on subsets of species showed that the phylogenetic performance did not seem to depend strongly on the sample. We expect that the best-performing genes identified here will be very useful for phylogenetic studies of fungi, at least at a large taxonomic scale. Furthermore, we compare the method developed here for finding genes for building robust phylogenies with previous ones and we advocate that our method could be applied to other groups of organisms when more complete genomes are available.  相似文献   

11.
Phylogenetic trees from multiple genes can be obtained in two fundamentally different ways. In one, gene sequences are concatenated into a super-gene alignment, which is then analyzed to generate the species tree. In the other, phylogenies are inferred separately from each gene, and a consensus of these gene phylogenies is used to represent the species tree. Here, we have compared these two approaches by means of computer simulation, using 448 parameter sets, including evolutionary rate, sequence length, base composition, and transition/transversion rate bias. In these simulations, we emphasized a worst-case scenario analysis in which 100 replicate datasets for each evolutionary parameter set (gene) were generated, and the replicate dataset that produced a tree topology showing the largest number of phylogenetic errors was selected to represent that parameter set. Both randomly selected and worst-case replicates were utilized to compare the consensus and concatenation approaches primarily using the neighbor-joining (NJ) method. We find that the concatenation approach yields more accurate trees, even when the sequences concatenated have evolved with very different substitution patterns and no attempts are made to accommodate these differences while inferring phylogenies. These results appear to hold true for parsimony and likelihood methods as well. The concatenation approach shows >95% accuracy with only 10 genes. However, this gain in accuracy is sometimes accompanied by reinforcement of certain systematic biases, resulting in spuriously high bootstrap support for incorrect partitions, whether we employ site, gene, or a combined bootstrap resampling approach. Therefore, it will be prudent to report the number of individual genes supporting an inferred clade in the concatenated sequence tree, in addition to the bootstrap support.  相似文献   

12.
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.  相似文献   

13.
Bayesian estimation of ancestral character states on phylogenies   总被引:17,自引:0,他引:17  
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods (BayesMultiState) is available from the authors.  相似文献   

14.
Assumptions about the costs of character change, coded in the form of a step matrix, determine most-parsimonious inferences of character evolution on phylogenies. We present a graphical approach to exploring the relationship between cost assumptions and evolutionary inferences from character data. The number of gains and losses of a binary trait on a phylogeny can be plotted over a range of cost assumptions, to reveal the inflection point at which there is a switch from more gains to more losses and the point at which all changes are inferred to be in one direction or the other. Phylogenetic structure in the data, the tree shape, and the relative frequency of states among the taxa influence the shape of such graphs and complicate the interpretation of possible permutation-based tests for directionality of change. The costs at which the most-parsimonious state of each internal node switches from one state to another can also be quantified by iterative ancestral-state reconstruction over a range of costs. This procedure helps identify the most robust inferences of change in each direction, which should be of use in designing comparative studies.  相似文献   

15.
Abstract— The merits of alternative approaches to the inference of evolutionary trees have been much discussed, but there have been few attempts to compare inferences systematically or to pinpoint the source of differences. The two major classes of approach are via likelihood inference under an evolutionary model and estimates based upon parsimony methods. Within the general class of likelihood approaches, there are differences depending upon the particular class of models considered. This paper makes comparisons of the characteristics of inferences for the case of quantitative variation (of allele frequencies, for example), concentrating on the case of very small numbers of populations where explicit solutions are possible, but also upon features which apply as well to inferences for larger groups of populations. The parsimony method of "minimum evolution" was proposed by Edwards and Cavalli-Sforza (1964) to provide an approximation to the likelihood solution for an intractable model. In fact, its estimated phylogenies are closest to those of a more recent model of Felsenstein (1981) which, like parsimony, produces a fundamentally unrooted tree. Likelihood estimates based upon models involving an implicit or explicit root are radically different. These differ also from each other, depending upon whether or not the root is explicitly estimated, and upon whether or not a model for the fissioning of populations is included. Some general features of the comparisons can be summarized.  相似文献   

16.
The idea that some organisms possess adaptive features that make them more likely to speciate and/or less likely to go extinct than closely related groups, suggests that large phylogenetic trees should be unbalanced (more species should occur in the group possessing the adaptive features than in the sister group lacking such features). Several methods have been used to document this type of adaptive radiation. One problem with these attempts is that evolutionary biologists may overlook balanced phylogenies while focusing on a few impressively unbalanced ones. To overcome this potential bias, we sampled published large phylogenies without regard to tree shape. These were used to test whether or not such trees are consistently unbalanced. We used recently developed null models to demonstrate that the shapes of large phylogenetic trees: 1) are similar among angiosperms, insects, and tetrapods; 2) differ from those expected due to random selection of a phylogeny from the pool of all trees of similar size; and 3) are significantly more unbalanced than expected if species diverge at random, therefore, conforming to one prediction of adaptive radiation. This represents an important first step in documenting whether adaptive radiation has been a general feature of evolution.  相似文献   

17.
Phylogenetic trees inferred from sequence data often have branch lengths measured in the expected number of substitutions and therefore, do not have divergence times estimated. These trees give an incomplete view of evolutionary histories since many applications of phylogenies require time trees. Many methods have been developed to convert the inferred branch lengths from substitution unit to time unit using calibration points, but none is universally accepted as they are challenged in both scalability and accuracy under complex models. Here, we introduce a new method that formulates dating as a nonconvex optimization problem where the variance of log-transformed rate multipliers is minimized across the tree. On simulated and real data, we show that our method, wLogDate, is often more accurate than alternatives and is more robust to various model assumptions.  相似文献   

18.
We have characterized the relationship between accurate phylogenetic reconstruction and sequence similarity, testing whether high levels of sequence similarity can consistently produce accurate evolutionary trees. We generated protein families with known phylogenies using a modified version of the PAML/EVOLVER program that produces insertions and deletions as well as substitutions. Protein families were evolved over a range of 100-400 point accepted mutations; at these distances 63% of the families shared significant sequence similarity. Protein families were evolved using balanced and unbalanced trees, with ancient or recent radiations. In families sharing statistically significant similarity, about 60% of multiple sequence alignments were 95% identical to true alignments. To compare recovered topologies with true topologies, we used a score that reflects the fraction of clades that were correctly clustered. As expected, the accuracy of the phylogenies was greatest in the least divergent families. About 88% of phylogenies clustered over 80% of clades in families that shared significant sequence similarity, using Bayesian, parsimony, distance, and maximum likelihood methods. However, for protein families with short ancient branches (ancient radiation), only 30% of the most divergent (but statistically significant) families produced accurate phylogenies, and only about 70% of the second most highly conserved families, with median expectation values better than 10(-60), produced accurate trees. These values represent upper bounds on expected tree accuracy for sequences with a simple divergence history; proteins from 700 Giardia families, with a similar range of sequence similarities but considerably more gaps, produced much less accurate trees. For our simulated insertions and deletions, correct multiple sequence alignments did not perform much better than those produced by T-COFFEE, and including sequences with expressed sequence tag-like sequencing errors did not significantly decrease phylogenetic accuracy. In general, although less-divergent sequence families produce more accurate trees, the likelihood of estimating an accurate tree is most dependent on whether radiation in the family was ancient or recent. Accuracy can be improved by combining genes from the same organism when creating species trees or by selecting protein families with the best bootstrap values in comprehensive studies.  相似文献   

19.
Because phylogenies can be estimated without stratigraphic data and because estimated phylogenies also infer gaps in sampling, some workers have used phylogeny estimates as templates for evaluating sampling from the fossil record and for "correcting" historical diversity patterns. However, it is not known how sampling intensity (the probability of sampling taxa per unit time) and completeness (the proportion of taxa sampled) affect the accuracy of phylogenetic inferences, nor how phylogenetically inferred estimates of sampling and diversity respond to inaccurate estimates of phylogeny. Both issues are addressed with a series of simulations using simple models of character evolution, varying speciation patterns, and various rates of speciation, extinction, character change, and preservation. Parsimony estimates of simulated phylogenies become less accurate as sampling decreases, and inaccurate trees chronically underestimate sampling. Biotic factors such as rates of morphologic change and extinction both affect the accuracy of phylogenetic estimates and thus affect estimated gaps in sampling, indicating that differences in implied sampling need not reflect actual differences in sampling. Errors in inferred diversity are concentrated early in the history of a clade. This, coupled with failure to account for true extinction times (i.e., the Signor-Lipps effect), inflates relative diversity levels early in clade histories. Because factors other than differences in sampling predict differences in the numbers of gaps implied by phylogeny estimates, inferred phylogenies can be misleading templates for evaluating sampling or historical diversity patterns.  相似文献   

20.
The enormous diversity of Arthropoda has complicated attempts by systematists to deduce the history of this group in terms of phylogenetic relationships and phenotypic change. Traditional hypotheses regarding the relationships of the major arthropod groups (Chelicerata, Myriapoda, Crustacea, and Hexapoda) focus on suites of morphological characters, whereas phylogenomics relies on large amounts of molecular sequence data to infer evolutionary relationships. The present discussion is based on expressed sequence tags (ESTs) that provide large numbers of short molecular sequences and so provide an abundant source of sequence data for phylogenetic inference. This study presents well-supported phylogenies of diverse arthropod and metazoan outgroup taxa obtained from publicly-available databases. An in-house bioinformatics pipeline has been used to compile and align conserved orthologs from each taxon for maximum likelihood inferences. This approach resolves many currently accepted hypotheses regarding internal relationships between the major groups of Arthropoda, including monophyletic Hexapoda, Tetraconata (Crustacea + Hexapoda), Myriapoda, and Chelicerata sensu lato (Pycnogonida + Euchelicerata). "Crustacea" is a paraphyletic group with some taxa more closely related to the monophyletic Hexapoda. These results support studies that have utilized more restricted EST data for phylogenetic inference, yet they differ in important regards from recently published phylogenies employing nuclear protein-coding sequences. The present results do not, however, depart from other phylogenies that resolve Branchiopoda as the crustacean sister group of Hexapoda. Like other molecular phylogenies, EST-derived phylogenies alone are unable to resolve morphological convergences or evolved reversals and thus omit what may be crucial events in the history of life. For example, molecular data are unable to resolve whether a Hexapod-Branchiopod sister relationship infers a branchiopod-like ancestry of the Hexapoda, or whether this assemblage originates from a malacostracan-like ancestor, with the morphologically simpler Branchiopoda being highly derived. Whereas this study supports many internal arthropod relationships obtained by other sources of molecular data, other approaches are required to resolve such evolutionary scenarios. The approach presented here turns out to be essential: integrating results of molecular phylogenetics and neural cladistics to infer that Branchiopoda evolved simplification from a more elaborate ancestor. Whereas the phenomenon of evolved simplification may be widespread, it is largely invisible to molecular techniques unless these are performed in conjunction with morphology-based strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号