首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arbuscular mycorrhizal (AM) fungi take up photosynthetically fixed carbon from plant roots and translocate it to their external mycelium. Previous experiments have shown that fungal lipid synthesized from carbohydrate in the root is one form of exported carbon. In this study, an analysis of the labeling in storage and structural carbohydrates after (13)C(1) glucose was provided to AM roots shows that this is not the only pathway for the flow of carbon from the intraradical to the extraradical mycelium (ERM). Labeling patterns in glycogen, chitin, and trehalose during the development of the symbiosis are consistent with a significant flux of exported glycogen. The identification, among expressed genes, of putative sequences for glycogen synthase, glycogen branching enzyme, chitin synthase, and for the first enzyme in chitin synthesis (glutamine fructose-6-phosphate aminotransferase) is reported. The results of quantifying glycogen synthase gene expression within mycorrhizal roots, germinating spores, and ERM are consistent with labeling observations using (13)C-labeled acetate and glycerol, both of which indicate that glycogen is synthesized by the fungus in germinating spores and during symbiosis. Implications of the labeling analyses and gene sequences for the regulation of carbohydrate metabolism are discussed, and a 4-fold role for glycogen in the AM symbiosis is proposed: sequestration of hexose taken from the host, long-term storage in spores, translocation from intraradical mycelium to ERM, and buffering of intracellular hexose levels throughout the life cycle.  相似文献   

2.
Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that participate in a highly beneficial root symbiosis with 80% of land plants. Strigolactones are trace molecules in plant root exudates that are perceived by AM fungi at subnanomolar concentrations. Within just a few hours, they were shown to stimulate fungal mitochondria, spore germination, and branching of germinating hyphae. In this study we show that treatment of Gigaspora rosea with a strigolactone analog (GR24) causes a rapid increase in the NADH concentration, the NADH dehydrogenase activity, and the ATP content of the fungal cell. This fully and rapidly (within minutes) activated oxidative metabolism does not require new gene expression. Up-regulation of the genes involved in mitochondrial metabolism and hyphal growth, and stimulation of the fungal mitotic activity, take place several days after this initial boost to the cellular energy of the fungus. Such a rapid and powerful action of GR24 on G. rosea cells suggests that strigolactones are important plant signals involved in switching AM fungi toward full germination and a presymbiotic state.  相似文献   

3.
4.
S Sun  J Wang  L Zhu  D Liao  M Gu  L Ren  Y Kapulnik  G Xu 《PloS one》2012,7(8):e43385
Root exudates play an important role in the early signal exchange between host plants and arbuscular mycorrhizal fungi. M161, a pre-mycorrhizal infection (pmi) mutant of the tomoto (Solanum lycopersicum) cultivar Micro-Tom, fails to establish normal arbuscular mycorrhizal symbioses, and produces exudates that are unable to stimulate hyphal growth and branching of Glomus intraradices. Here, we report the identification of a purified active factor (AF) that is present in the root exudates of wild-type tomato, but absent in those of M161. A complementation assay using the dual root organ culture system showed that the AF could induce fungal growth and branching at the pre-infection stage and, subsequently, the formation of viable new spores in the M161 background. Since the AF-mediated stimulation of hyphal growth and branching requires the presence of the M161 root, our data suggest that the AF is essential but not sufficient for hyphal growth and branching. We propose that the AF, which remains to be chemically determined, represents a plant signal molecule that plays an important role in the efficient establishment of mycorrhizal symbioses.  相似文献   

5.
6.
7.
Transformed roots of carrot were used to determine the effects of root metabolites on hyphal development from spores of the vesicular-arbuscular mycorrhizal fungus Gigaspora margarita. Hyphal growth of this obligately biotrophic symbiont was greatly stimulated by a synergistic interaction between volatile and exudated factors produced by roots. Root volatiles alone provided little stimulation, and root exudates alone had no effect. For the first time, carbon dioxide was demonstrated to be a critical root volatile involved in the enhancement of hyphal growth. 14C-labeled root volatiles were fixed by the fungus and thus strongly suggested that CO2 served as an essential carbon source.  相似文献   

8.
Different values exist for glucose metabolism in white matter; it appears higher when measured as accumulation of 2-deoxyglucose than when measured as formation of glutamate from isotopically labeled glucose, possibly because the two methods reflect glycolytic and tricarboxylic acid (TCA) cycle activities, respectively. We compared glycolytic and TCA cycle activity in rat white structures (corpus callosum, fimbria, and optic nerve) to activities in parietal cortex, which has a tight glycolytic-oxidative coupling. White structures had an uptake of [(3)H]2-deoxyglucose in vivo and activities of hexokinase, glucose-6-phosphate isomerase, and lactate dehydrogenase that were 40-50% of values in parietal cortex. In contrast, formation of aspartate from [U-(14)C]glucose in awake rats (which reflects the passage of (14)C through the whole TCA cycle) and activities of pyruvate dehydrogenase, citrate synthase, alpha-ketoglutarate dehydrogenase, and fumarase in white structures were 10-23% of cortical values, optic nerve showing the lowest values. The data suggest a higher glycolytic than oxidative metabolism in white matter, possibly leading to surplus formation of pyruvate or lactate. Phosphoglucomutase activity, which interconverts glucose-6-phosphate and glucose-1-phosphate, was similar in white structures and parietal cortex ( approximately 3 nmol/mg tissue/min), in spite of the lower glucose uptake in the former, suggesting that a larger fraction of glucose is converted into glucose-1-phosphate in white than in gray matter. However, the white matter glycogen synthase level was only 20-40% of that in cortex, suggesting that not all glucose-1-phosphate is destined for glycogen formation.  相似文献   

9.
Structural gene mutants of the glycogen biosynthetic enzymes adenosine diphosphate glucose pyrophosphorylase (glgC) and glycogen synthase (glgA) were isolated and partially characterized. The cotransduction frequencies of these genes with the aspartic semialdehyde dehydrogenase (asd) and glycerol-3-phosphate dehydrogenase (glpD) genes suggested the unambiguous gene order of glpD glgA glgC asd. The results of the three-factor cross glpD- glgA- glgC+ X glpD+ glgA+ glgC- were consistent with the proposed order. A simultaneous and approximately equivalent derepression of the glgC, glgA, and glgB (branching enzyme) gene products was observed in the late logarithmic-early stationary phase of growth on enriched media. These results are consistent with the coordinately regulated synthesis of the three glycogen biosynthetic enzymes in Salmonella typhimurium.  相似文献   

10.
11.
12.
Common molecular changes in cancer cells are high carbon flux through the glycolytic pathway and overexpression of fatty acid synthase, a key lipogenic enzyme. Since glycerol 3-phosphate dehydrogenase creates a link between carbohydrates and the lipid metabolism, we have investigated the activity of glycerol 3-phosphate dehydrogenase and various lipogenic enzymes in human bladder cancer. The data presented in this paper indicate that glycerol 3-phosphate dehydrogenase activity in human bladder cancer is significantly higher compared to adjacent non-neoplastic tissue, serving as normal control bladder tissue. Increased glycerol 3-phosphate dehydrogenase activity is accompanied by increased enzyme activity, either directly (fatty acid synthase) or indirectly (through ATP-citrate lyase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and citrate synthase) involved in fatty acid synthesis. Coordinated upregulation of glycerol 3-phosphate dehydrogenase and lipogenic enzymes activities in human bladder cancer suggests that glycerol 3-phosphate dehydrogenase supplies glycerol 3-phosphate for lipid biosynthesis.  相似文献   

13.
14.
Plant rhizosphere and internal tissues may constitute a relevant habitat for soil bacteria displaying high catabolic versatility towards xenobiotic aromatic compounds. Root exudates contain various molecules that are structurally related to aromatic xenobiotics and have been shown to stimulate bacterial degradation of aromatic pollutants in the rhizosphere. The ability to degrade specific aromatic components of root exudates could thus provide versatile catabolic bacteria with an advantage for rhizosphere colonization and growth. In this work, Cupriavidus pinatubonensis JMP134, a well-known aromatic compound degrader (including the herbicide 2,4-dichlorophenoxyacetate, 2,4-D), was shown to stably colonize Arabidopsis thaliana and Acacia caven plants both at the rhizoplane and endorhizosphere levels and to use root exudates as a sole carbon and energy source. No deleterious effects were detected on these colonized plants. When a toxic concentration of 2,4-D was applied to colonized A. caven, a marked resistance was induced in the plant, showing that strain JMP134 was both metabolically active and potentially beneficial to its host. The role for the β-ketoadipate aromatic degradation pathway during plant root colonization by C. pinatubonensis JMP134 was investigated by gene inactivation. A C. pinatubonensis mutant derivative strain displayed a reduced ability to catabolise root exudates isolated from either plant host. In this mutant strain, a lower competence in the rhizosphere of A. caven was also shown, both in gnotobiotic in vitro cultures and in plant/soil microcosms.  相似文献   

15.
Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser(645), Ser(649), Ser(653), Ser(657)) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. "Insulin resistance" is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.  相似文献   

16.
为明确香蕉根系分泌物对枯萎病菌及其生防枯草芽孢杆菌的生物效应,采用离位溶液培养法收集抗枯萎病香蕉品种(南天黄)和感枯萎病香蕉品种(桂蕉6号)的根系分泌物,研究根系分泌物对土壤微生物种群数量、香蕉枯萎病菌和枯草芽孢杆菌生长的影响。结果表明: 抗病品种根系分泌物能显著减少土壤真菌的数量,抑制枯萎病菌孢子的萌发;而感病品种根系分泌物能显著促进病菌菌丝生长和孢子的萌发,两个品种根系分泌物均能显著促进枯草芽孢杆菌的生长和生物膜形成。经抗(感)病香蕉品种根系分泌物处理,病菌菌丝生长速率分别为11.28和12.28 mm·d-1,病菌孢子的萌发率分别为34.6%和79.5%;枯草芽孢杆菌培养12 h后菌体生长量的OD600分别为1.27和1.14,生物膜形成量在静置培养72 h后OD570分别达1.11和1.30,两个品种处理间的差异均达显著水平。枯草芽孢杆菌在香蕉感病品种根际中定殖的菌量显著高于抗病品种。通过对两个品种根系分泌物中可溶性总糖、游离氨基酸和有机酸的含量和组成分析,发现抗病品种根系分泌物中有机酸和游离氨基酸的含量明显高于感病品种,在各组成成分中,以乙酸和脯氨酸在抗(感)病香蕉品种根系分泌物中含量比值较高,分别达3.7和2.4倍。综上所述,抗病品种根系分泌物能抑制病菌生长,感病品种根系分泌物则会显著促进病菌生长,而两个品种根系分泌物均能显著促进枯草芽孢杆菌的生长和生物膜的形成。  相似文献   

17.
对各种含氮基质、葡萄糖和(或)根浸出液中培养的丛枝菌根真菌Glomus intraradices孢子,在萌发过程中对不同氮素的利用及其氨基酸的生物合成进行了研究.用稳定同位素标记及质谱仪来分析不同氮素的利用和氨基酸的生物合成.以高效液相色谱测量氨基酸的浓度.在缺少外源氮素的情况下,丛枝菌根真菌孢子萌发时可以利用内部储存的含氮化合物生物合成游离氨基酸.其中,丝氨酸和甘氨酸是大量合成的氨基酸.合成的氨基酸浓度在2周内随着萌发时间的增加而增加.在有可利用的外源无机氮(铵盐、硝酸盐和尿素)和有机氮(氨基酸)时,铵盐和尿素比硝酸盐更容易被AM真菌萌发孢子利用,而其利用氨基酸中的氮比无机氮源慢的多.孢子吸收同化外源无机氮,且将其整合到游离氨基酸中,这些新生氨基酸浓度比无外源氮添加时要高得多.在无葡萄糖添加的硝酸盐培养液中,AM真菌孢子中积累大量天冬酰胺.然而,在含有葡萄糖的培养液中,萌发孢子因葡萄糖的吸收促进了对外源氮的吸收,产生的游离氨基酸是无葡萄糖时的5倍,并且发现精氨酸转为含量最多的游离氨基酸.并且,从外源氮吸收同化的氮可以储存于精氨酸中,随之,精氨酸被整合到AM真菌孢子储存的蛋白质中.此外,根浸出原液在AM真菌孢子萌发2周后对氮的吸收作用不明显.  相似文献   

18.
Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [(14)C]Acetate and [(14)C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.  相似文献   

19.
20.
Summary No relationship between the degree of VA mycorrhizal infection and total sugar content in root exudates of several plant species of different degree of mycorrhizal susceptibility were observed during the early stages of plant growth. Even more, the non host plants tested showed higher sugar exudation ability, when expressed as the amount exuded per g of root, at these early periods of their growth, than plants susceptible to mycorrhizal infection.Root exudates from host and non host plants influenced similarly the percentage of spore germination and number of secondary spores under controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号