首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice carrying two or more transgenes are used frequently to evaluate oncogene interactions during carcinogenesis. However, neoplastic transformation typically results in reduced expression both of differentiation-specific genes and of transgenes that use their promoters. In contrast, the more widely expressed metallothionein (MT) gene remains expressed at a high level in certain neoplasms, including those developing in pancreas. We have developed a system to maintain high-level, tissue-specific transgene expression during pancreatic carcinogenesis that uses Cre recombinase and a lox site-containing target transgene. Cre was expressed in pancreatic acinar cells under control of the elastase promoter (EL). Cre-mediated target transgene recombination placed a previously silent open-reading frame, encoding rat transforming growth factor alpha (TGFalpha), under control of the MT gene promoter. As long as DNA rearrangement does not occur in other cell types that express MT, TGFalpha expression will be restricted to acinar cells. Development of an effective target transgenic mouse required evaluation of multiple lineages to identify one with sufficient TGFalpha expression to induce pancreatic lesions after transgene rearrangement.  相似文献   

2.
Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult.  相似文献   

3.
Cre-mediated site-specific recombination allows conditional transgene expression or gene knockouts in mice. Inducible Cre recombination systems have been developed to bypass initial embryonic lethal phenotypes and provide access to later embryonic or adult phenotypes. We have produced Cre transgenic mice in which excision is tamoxifen inducible and occurs in a widespread mosaic pattern. We utilized our Cre excision reporter system combined with an embryonic stem (ES) cell screen to identify ES cell clones with undetectable background Cre activity in the absence of tamoxifen but efficient excision upon addition of tamoxifen. The CreER transgenic mouse lines derived from the ES cells were tested using the Z/AP and Z/EG Cre reporter lines. Reporter gene expression indicated Cre excision was maximal in midgestation embryos by 2 days after tamoxifen administration, with an overall efficiency of 5-10% of cells with Cre excision. At 3 days after tamoxifen treatment most reporter gene expression marked groups of cells, suggesting an expansion of cells with Cre excision, and the proportion of cells with Cre excision was maintained. In adults, Cre excision was also observed with varying efficiencies in all tissues after tamoxifen treatment.  相似文献   

4.
We generated pdx1(PB)CreERtrade mark transgenic mice in which a pancreatic endocrine-specific enhancer (pdx1(PB)) drives expression of a tamoxifen (TM)-inducible Cre recombinase/estrogen receptor fusion protein. We previously showed that this enhancer directs expression to immature endocrine cells as well as postnatal islets. This transgene provides spatial and temporal control of gene inactivation in pancreatic islets. Three transgenic lines were generated and crossed with R26R mice to assess recombination efficiency. TM-dependent lacZ expression was observed in islets from all three lines. One line was chosen for further study based on its strong islet-specific recombination in embryos and adults. In this line, a dose-dependent increase in recombination efficiency was observed in endocrine cells. Our data suggest that this transgenic line will be a valuable tool to inactivate genes in pancreatic endocrine cells during development or in the adult. The dose-dependent nature of recombination suggests a potential use for this line in the generation of genetic mosaic animals.  相似文献   

5.
6.
Inducible transgenic mouse models that impose a constraint on both temporal and spatial expression of a given transgene are invaluable. These animals facilitate experiments that can address the role of a specific cell or group of cells within an animal or in a particular window of time. A common approach to achieve inducibility involves the site-specific recombinase 'Cre', which is linked to a modified version of one of various steroid hormone-binding domains. Thus, the expression of Cre is regulated such that a functional nuclear transgene product can only be generated with the addition of an exogenous ligand. However, critical requirements of this system are that the nuclear localization of the transgene product be tightly regulated, that the dosage of the inducing agent remains consistent among experimental animals and that the transgene cassette cannot express in the absence of the inducing agent. We used the Cre ER(T2) cassette, which is regulated by the addition of the estrogen antagonist tamoxifen to determine whether cross-contamination of tamoxifen between animals housed together can be a significant source of spurious results. We found that cross-contamination of exogenous tamoxifen does occur. It occurred in all animals tested. We suggest that the mechanism of contamination is through exposure to tamoxifen in the general environment and/or to coprophagous behavior. These results have important implications for the interpretation and design of experiments that use 'inducible' transgenic animals.  相似文献   

7.
8.
9.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

10.
Cre/LoxP-mediated DNA recombination allows for gene function and cell lineage analyses during embryonic development and tissue regeneration. Here, we describe the derivation of a K19(CreERT) mouse line in which the tamoxifen-activable CreER(T) was knocked into the endogenous cytokeratin 19 locus. In the absence of tamoxifen, leaky Cre activity could be detected only in less than 1% of stomach and intestinal epithelial cells, but not in pancreatic or hepatic epithelial tissues. Tamoxifen administration in postnatal animals induced widespread DNA recombination in epithelial cells of pancreatic ducts, hepatic ducts, stomach, and intestine in a dose-dependent manner. Significantly, we found that Cre activity could be induced in the putative gut stem/progenitor cells that sustained long-term gut epithelial expression of a Cre reporter. This mouse line should therefore provide a valuable reagent for manipulating gene activity and for cell lineage marking in multiorgans during normal tissue homeostasis and regeneration.  相似文献   

11.
The cell-specific elastase I enhancer comprises two domains.   总被引:13,自引:7,他引:6       下载免费PDF全文
Two separate domains within the 134-base-pair rat elastase I enhancer and a third domain at the enhancer-promoter boundary are required for selective expression in pancreatic acinar cells. The domains were detected by a series of 10-base-pair substitution mutations across the elastase I gene regulatory region from positions -200 to -61. The effect of each mutant on the pancreas-specific expression of a linked chloramphenicol acetyltransferase gene was assayed by transfection into pancreatic 266-6 acinar cells and control NIH/3T3 cells. The two enhancer domains are nonredundant, because mutations in either eliminated (greater than 100-fold reduction) expression in 266-6 cells. DNase I protection studies of the elastase I enhancer-promoter region with partially purified nuclear extracts from pancreatic tissue and 266-6 cells revealed nine discrete protected regions (footprints) on both DNA strands. One of three footprints that lie within the two functional domains of the enhancer contained a sequence, conserved among several pancreas-specific genes, which when mutated decreased linked chloramphenicol acetyltransferase expression up to 170-fold in 266-6 cells. This footprint may represent a binding site for one or more pancreas-specific regulatory proteins.  相似文献   

12.
Autophagy protects against many infections by inducing the lysosomal-mediated degradation of invading pathogens. However, previous in?vitro studies suggest that some enteroviruses not only evade these protective effects but also exploit autophagy to facilitate their replication. We generated Atg5(f/f)/Cre(+) mice, in which the essential autophagy gene Atg5 is specifically deleted in pancreatic acinar cells, and show that coxsackievirus B3 (CVB3) requires autophagy for optimal infection and pathogenesis. Compared to Cre(-) littermates, Atg5(f/f)/Cre(+) mice had an ~2,000-fold lower CVB3 titer in the pancreas, and pancreatic pathology was greatly diminished. Both in?vivo and in?vitro, Atg5(f/f)/Cre(+) acinar cells had reduced intracellular viral RNA and?proteins. Furthermore, intracellular structural elements induced upon CVB3 infection, such as compound membrane vesicles and highly geometric paracrystalline arrays, which may represent viral replication platforms, were infrequently observed in?infected Atg5(f/f)/Cre(+) cells. Thus, CVB3-induced subversion of autophagy not only benefits the virus but also exacerbates pancreatic pathology.  相似文献   

13.
In this study, we used the male germ cell-specific phosphoglycerate kinase 2 (Pgk2) promoter to generate Pgk2Cre transgenic mice to allow investigation of genes critically involved in meiosis. The Pgk2 promoter had been used previously to target transgene expression to spermatocytes and spermatids in several laboratories including ours. In several Cre targeting experiments using other promoters, ectopic Cre expression had been observed, but the timing and extent of this expression was not analyzed. We demonstrate that in adult mice the Pgk2Cre transgene is expressed specifically in spermatocytes and spermatids, as expected. However, in offspring from matings of Pgk2Cre mice and an H19loxP indicator strain, we discovered that recombination events had occurred in several, but not all, tissues to varying extents. The lacZ-loxP transgenic indicator strain was next used to uncover ectopic Cre expression even in single cells, which indicated that the Pgk2Cre transgene is expressed between days 11 and 15 during embryogenesis in several tissues and organs. Using an RT PCR assay we were unable to detect endogenous Pgk2 mRNA during embryogenesis or in adult tissues other than testis. In conclusion, the Pgk2 promoter is a valid choice for targeting gene expression to meiotic male germ cells, since transient ectopic expression is unlikely to have a discernable effect in most studies, but it may be inappropriate for utilization with Cre recombinase.  相似文献   

14.
Tissue‐specific transgene expression in the prostate epithelium has previously been achieved using short prostate‐specific promoters, rendering transgenic mouse lines susceptible to integration site‐dependent effects. Here we demonstrate the applicability of bacterial artificial chromosome (BAC) technology to transgene expression in the prostate epithelium. We present mouse lines expressing an inducible Cre protein (MerCreMer) under the control of regulatory elements of the probasin gene on a BAC. These mouse lines show high organ specificity, high transgene expression in anterior, dorsal and lateral prostate lobes, no background Cre recombination using a reporter strain and adjustable amounts of Cre‐induced recombination upon tamoxifen induction. Together with two recently reported transgenic lines expressing the Cre‐ERT2 protein from small prostate‐specific promoters, these mouse lines will be useful in research focused on prostate‐specific disorders such as benign hyperplasia or cancer. genesis 47:757–764, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Ligand-dependent site-specific recombinases are powerful tools to engineer the mouse genome in specific somatic cell types at selected times during pre- and postnatal development. Current efforts are primarily directed towards increasing the efficiency of this recombination system in mice. We have generated transgenic mouse lines expressing a tamoxifen-activated Cre recombinase, CreER(T2), under the control of the smooth muscle-specific SM22 promoter. Both a randomly integrated transgene [SM-CreER(T2)(tg)] and a transgene that has been "knocked in" into the endogenous SM22 locus [SM-CreER(T2)(ki)] were expressed in smooth muscle-containing tissues. The level of CreER(T2) expression and tamoxifen-induced recombination was lower in SM-CreER(T2)(tg) mice compared with SM-CreER(T2)(ki) mice. Whereas no recombinase activity could be detected in vehicle-treated SM-CreER(T2)(ki) mice, administration of tamoxifen induced the excision of a loxP-flanked reporter transgene in up to 100% of smooth muscle cells. The recombined genome persisted for at least four months after tamoxifen treatment. SM-CreER(T2)(ki) transgenic mice should be useful to study the effects of various somatic mutations in smooth muscle.  相似文献   

16.
Conditional gene targeting using the Cre-loxp system is a well established technique in numerous in vitro and in vivo systems. Ligand regulated forms of Cre have been increasingly used in these applications in order to gain temporal and spatial control over conditional targeting. The tamoxifen-regulated Cre variant mer-Cre-mer (mCrem) is widely utilized because of its reputation for tight regulation in the absence of its tamoxifen ligand. In the DT40 chicken B cell line, we generated an mCrem-based reversible switch for conditional regulation of a transgene, and in contrast with previous work, observed significant constitutive activity of mCrem. This prompted us to use our system for analysis of the parameters governing tamoxifen-regulated mCrem recombination of a genomic target. We find that robust mCrem expression correlates with a high level of tamoxifen-independent Cre activity, while clones expressing mCrem at the limit of western blot detection exhibit extremely tight regulation. We also observe time and dose-dependent effects on mCrem activity which suggest limitations on the use of conditional targeting approaches for applications which require tight temporal coordination of Cre action within a cell population.  相似文献   

17.
Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.  相似文献   

18.
Significant advances in our understanding of normal development and disease have been facilitated by engineered mice in which genes can be altered in a spatially, temporally, or cell type restricted manner using site specific recombinase systems like Cre‐loxP or Flp‐frt. In many circumstances it is important to understand how interactions between multiple genes influence a given phenotype. Robust approaches for precisely controlling multiple genetic alterations independently are limited, however, thus the impact of mutation order and timing on phenotype is generally unknown. Here we describe and validate a novel Gt(ROSA)26Sor targeted transgene allowing precise control over the order and timing of multiple genetic mutations in the mouse. The transgene expresses an optimized, Flp‐estrogen receptor fusion protein (Flpo‐ERT2) under the control of a loxP‐stop‐loxP cassette. In this system, genes modified by loxP sites are altered first upon expression of Cre. Cre also eliminates the loxP‐stop‐loxP cassette, permitting widespread expression of Flpo‐ERT2. Because of the estrogen receptor fusion, Flp activity remains inert until administration of tamoxifen, allowing genes modified by frt sites to be modified subsequently with controllable timing. This mouse transgene will be useful in a wide variety of applications where independent control of different mutations in the mouse is desirable.  相似文献   

19.
Constitutive myostatin gene knockout in mice causes excessive muscle growth during development. To examine the effect of knocking out the myostatin gene after muscle has matured, we generated mice in which myostatin exon 3 was flanked by loxP sequences (Mstn[f/f]) and crossed them with mice bearing a tamoxifen-inducible, ubiquitously expressed Cre recombinase transgene. At 4 mo of age, Mstn[f/f]/Cre+ mice that had not received tamoxifen had a 50-90% reduction in myostatin expression due to basal Cre activity but were not hypermuscular relative to Mstn[w/w]/Cre+ mice (homozygous for wild-type myostatin gene). Three months after tamoxifen treatment (initiated at 4 mo of age), muscle mass had not changed from the pretreatment level in Mstn[w/w]/Cre+ control mice. Tamoxifen administration to 4-mo-old Mstn[f/f]/Cre+ mice reduced myostatin mRNA expression to less than 1% of normal, which increased muscle mass approximately 25% over the following 3 mo in both male and female mice (P<0.005 vs. control). Fiber hypertrophy appeared to be sufficient to explain the increase in muscle mass. The pattern of expression of genes encoding the various myosin heavy-chain isoforms was unaffected by postdevelopmental myostatin knockout. We conclude that, even after developmental muscle growth has ceased, knockout of the myostatin gene induces a significant increase in muscle mass.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号