首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endoglin modulates cellular responses to TGF-beta 1   总被引:18,自引:0,他引:18       下载免费PDF全文
《The Journal of cell biology》1996,133(5):1109-1121
Endoglin is a homodimeric membrane glycoprotein which can bind the beta 1 and beta 3 isoforms of transforming growth factor-beta (TGF-beta). We reported previously that endoglin is upregulated during monocyte differentiation. We have now observed that TGF-beta itself can stimulate the expression of endoglin in cultured human monocytes and in the U-937 monocytic line. To study the functional role of endoglin, stable transfectants of U-937 cells were generated which overexpress L- or S- endoglin isoforms, differing in their cytoplasmic domain. Inhibition of cellular proliferation and downregulation of c-myc mRNA which are normally induced by TGF-beta 1 in U-937 cells were totally abrogated in L-endoglin transfectants and much reduced in the S- endoglin transfectants. Inhibition of proliferation by TGF-beta 2 was not altered in the transfectants, in agreement with the isoform specificity of endoglin. Additional responses of U-937 cells to TGF- beta 1, including stimulation of fibronectin synthesis, cellular adhesion, platelet/endothelial cell adhesion molecule 1 (PECAM-1) phosphorylation, and homotypic aggregation were also inhibited in the endoglin transfectants. However, modulation of integrin and PECAM-1 levels and stimulation of mRNA levels for TGF-beta 1 and its receptors R-I, R-II, and betaglycan occurred normally in the endoglin transfectants. No changes in total ligand binding were observed in L- endoglin transfectants relative to mock, while a 1.5-fold increase was seen in S-endoglin transfectants. The degradation rate of the ligand was the same in all transfectants. Elucidating the mechanism by which endoglin modulates several cellular responses to TGF-beta 1 without interfering with ligand binding or degradation should increase our understanding of the complex pathways which mediate the effects of this factor.  相似文献   

2.
3.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

4.
Glycosaminoglycan-modified isoforms of CD44 have been implicated in growth factor presentation at sites of inflammation. In the present study we show that COS cell transfectants expressing CD44 isoforms containing the alternatively spliced exon V3 are modified with heparan sulfate (HS). Binding studies with three HS-binding growth factors, basic-fibroblast growth factor (b-FGF), heparin binding-epidermal growth factor (HB-EGF), and amphiregulin, showed that the HS-modified CD44 isoforms are able to bind to b-FGF and HB-EGF, but not AR. b-FGF and HB-EGF binding to HS-modified CD44 was eliminated by pretreating the protein with heparitinase or by blocking with free heparin. HS- modified CD44 immunoprecipitated from keratinocytes, which express a CD44 isoform containing V3, also bound to b-FGF. We examined whether HS- modified CD44 isoforms were expressed by activated endothelial cells where they might present HS-binding growth factors to leukocytes during an inflammatory response. PCR and antibody-binding studies showed that activated cultured endothelial cells only express the CD44H isoform which does not contain any of the variably spliced exons including V3. Immunohistological studies with antibodies directed to CD44 extracellular domains encoded by the variably spliced exons showed that vascular endothelial cells in inflamed skin tissue sections do not express CD44 spliced variants. Keratinocytes, monocytes, and dendritic cells in the same specimens were found to express variably spliced CD44. 35SO4(-2)-labeling experiments demonstrated that activated cultured endothelial cells do not express detectable levels of chondroitin sulfate or HS-modified CD44. Our results suggest that one of the functions of CD44 isoforms expressing V3 is to bind and present a subset of HS-binding proteins. Furthermore, it is probable that HS- modified CD44 is involved in the presentation of HS-binding proteins by keratinocytes in inflamed skin. However, our data suggests that CD44 is not likely to be the proteoglycan principally involved in presenting HS- binding growth factors to leukocytes on the vascular cell wall.  相似文献   

5.
6.
The neuronal K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the hyperpolarizing actions of inhibitory neurotransmitters gamma-aminobutyric acid and glycine in the central nervous system. This study shows that the mammalian KCC2 gene (alias Slc12a5) generates two neuron-specific isoforms by using alternative promoters and first exons. The novel KCC2a isoform differs from the only previously known KCC2 isoform (now termed KCC2b) by 40 unique N-terminal amino acid residues, including a putative Ste20-related proline alanine-rich kinase-binding site. Ribonuclease protection and quantitative PCR assays indicated that KCC2a contributes 20-50% of total KCC2 mRNA expression in the neonatal mouse brain stem and spinal cord. In contrast to the marked increase in KCC2b mRNA levels in the cortex during postnatal development, the overall expression of KCC2a remains relatively constant and makes up only 5-10% of total KCC2 mRNA in the mature cortex. A rubidium uptake assay in human embryonic kidney 293 cells showed that the KCC2a isoform mediates furosemide-sensitive ion transport activity comparable with that of KCC2b. Mice that lack both KCC2 isoforms die at birth due to severe motor defects, including disrupted respiratory rhythm, whereas mice with a targeted disruption of the first exon of KCC2b survive for up to 2 weeks but eventually die due to spontaneous seizures. We show that these mice lack KCC2b but retain KCC2a mRNA. Thus, distinct populations of neurons show a differential dependence on the expression of the two isoforms: KCC2a expression in the absence of KCC2b is presumably sufficient to support vital neuronal functions in the brain stem and spinal cord but not in the cortex.  相似文献   

7.
Antibodies to the solute carrier protein, CTL2/SLC44A2, cause hearing loss in animals, are frequently found in autoimmune hearing loss patients, and are implicated in transfusion-related acute lung injury. We cloned a novel CTL2/SLC44A2 isoform (CTL2 P1) from inner ear and identified an alternate upstream promoter and exon 1a encoding a protein of 704 amino acids which differs in the first 10–12 amino acids from the known exon 1b isoform (CTL2 P2; 706 amino acids). The expression of these CTL2/SLC44A2 isoforms, their posttranslational modifications in tissues and their localization in HEK293 cells expressing rHuCTL2/SLC44A2 were assessed. P1 and P2 isoforms with differing glycosylation are variably expressed in cochlea, tongue, heart, colon, lung, kidney, liver and spleen suggesting tissue specific differences that may influence function in each tissue. Because antibodies to CTL2/SLC44A2 have serious pathologic consequences, it is important to understand its distribution and modifications. Heterologous expression in X. laevis oocytes shows that while human CTL2-P1 does not transport choline, human CTL2-P2 exhibits detectable choline transport activity.  相似文献   

8.
Ligand activation of fibroblast growth factor receptor-1 (FGFR-1) induces an angiogenic response following activation of multiple intracellular signaling substrates, including the Src family of nonreceptor tyrosine kinases (SFK). However, the direct association between FGFR-1 and SFK and the involvement of SFK in FGFR-1-dependent cell proliferation have been controversial. Structural variants of FGFR-1 are generated by alternative splicing which results in two major isoforms, containing either three (FGFR-1α) or two (FGFR-1β) immunoglobulin-like domains in the extracellular region. To determine whether alternatively spliced FGFR-1 isoforms differentially activate SFK, we have examined FGF receptor-negative endothelial cells stably transfected with human cDNA encoding either FGFR-1α or FGFR-1β. Transient activation of c-YES, the predominant SFK expressed in these endothelial cells, was restricted to FGFR-1β transfectants following exposure to acidic fibroblast growth factor (FGF-1). Co-immunoprecipitation studies revealed that c-YES directly associated with FGFR-1β. The Src homology (SH)2 domain (and not the SH3 domain) of c-YES was able to recognize tyrosine phosphorylated FGFR-1β. FGFR-1β-specific activation of c-YES was accompanied by its association with and activation of cortactin. FGF-1 treatment of both FGFR-1α and FGFR-1β transfectants induced SFK-independent cellular proliferation and growth in low density cultures. At high density, under both anchorage-dependent and -independent conditions, FGF-1 failed to induce proliferation and growth of FGFR-1α transfectants. In contrast, FGF-1 induced proliferation, growth, and formation of cord-like structures in high density cultures of FGFR-1β transfectants in an SFK-dependent manner. In vitro cord formation on Matrigel was restricted to FGFR-1β transfectants in an SFK-dependent manner. Formation of vascular structures in vivo was limited to endothelial cells transfected with FGFR-1β. Collectively, these results emphasize the roles of alternatively spliced FGFR-1 structural isoforms and activation of SFK as modulators of endothelial cell growth during the formation of neovascular structures.  相似文献   

9.
Humans express five distinct myosin isoforms in the sarcomeres of adult striated muscle (fast IIa, IId, the slow/cardiac isoform I/β, the cardiac specific isoform α, and the specialized extraocular muscle isoform). An additional isoform, IIb, is present in the genome but is not normally expressed in healthy human muscles. Muscle fibers expressing each isoform have distinct characteristics including shortening velocity. Defining the properties of the isoforms in detail has been limited by the availability of pure samples of the individual proteins. Here we study purified recombinant human myosin motor domains expressed in mouse C2C12 muscle cells. The results of kinetic analysis show that among the closely related adult skeletal isoforms, the affinity of ADP for actin·myosin (KAD) is the characteristic that most readily distinguishes the isoforms. The three fast muscle myosins have KAD values of 118, 80, and 55 μm for IId, IIa, and IIb, respectively, which follows the speed in motility assays from fastest to slowest. Extraocular muscle is unusually fast with a far weaker KAD = 352 μm. Sequence comparisons and homology modeling of the structures identify a few key areas of sequence that may define the differences between the isoforms, including a region of the upper 50-kDa domain important in signaling between the nucleotide pocket and the actin-binding site.  相似文献   

10.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion molecule that is highly expressed on the surface of endothelial cells and some hematopoietic cells. Its cytoplasmic domain is encoded by multiple exons, which undergo alternative splicing. Here, we demonstrate that the human PECAM-1 cytoplasmic domain undergoes alternative splicing, generating six different isoforms. RT-PCR cloning and DNA sequence analysis indicated that human tissue and endothelial cells express multiple isoforms of PECAM-1, including the full-length PECAM-1 and five other isoforms, which lack exon 12, 13, 14, or 15 or exons 14 and 15. The full-length PECAM-1 is the predominant isoform detected in human tissue and endothelial cells. This is in contrast to murine endothelium, in which the PECAM-1 isoform lacking exons 14 and 15 is the predominant isoform. The PECAM-1 isoform lacking exon 13 detected in human tissue and endothelial cells is absent in murine endothelium. The expression pattern of PECAM-1 isoforms changes during tube formation of endothelial cells on Matrigel, which may indicate specialized roles for specific isoforms of PECAM-1 during angiogenesis. The data presented here demonstrate that human PECAM-1 undergoes alternative splicing, generating multiple isoforms in vascular beds of various tissues. Therefore, the regulated expression of these isoforms may influence endothelial cell adhesive properties during angiogenesis and/or vasculogenesis.  相似文献   

11.
12.
We have previously identified angiomotin by its ability to bind to and mediate the anti-angiogenic properties of angiostatin. In vivo and in vitro data indicate an essential role of angiomotin in endothelial cell motility. Here we show that angiostatin binds angiomotin on the cell surface and provide evidence for a transmembrane model for the topology of both p80 and p130 angiomotin isoforms. Immunofluorescence analysis shows that angiomotin co-localized with ZO-1 in cell-cell contacts in endothelial cells in vitro and in angiogenic blood vessels of the postnatal mouse retina in vivo. Transfection of p80 as well as p130 angiomotin in Chinese hamster ovary cells resulted in junctional localization of both isoforms. Furthermore, p130 angiomotin could recruit ZO-1 to actin stress fibers. The p130 but not p80 isoform could be coprecipitated with MAGI-1b, a component of endothelial tight junctions. Paracellular permeability, as measured by diffusion of fluorescein isothiocyanate-dextran, was reduced by p80 and p130 angiomotin expression with 70 and 88%, respectively, compared with control. Angiostatin did not have any effect on cell permeability but inhibited the migration of angiomotin-expressing cells in the Boyden chamber assay. We conclude that angiomotin, in addition to controlling cell motility, may play a role in the assembly of endothelial cell-cell junctions.  相似文献   

13.
Trafficking of mRNA molecules from the nucleus to distal processes in neural cells is mediated by heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 trans‐acting factors. Although hnRNP A2/B1 is alternatively spliced to generate four isoforms, most functional studies have not distinguished between these isoforms. Here, we show, using isoform‐specific antibodies and isoform‐specific green fluorescent protein (GFP)‐fusion expression constructs, that A2b is the predominant cytoplasmic isoform in neural cells, suggesting that it may play a key role in mRNA trafficking. The differential subcellular distribution patterns of the individual isoforms are determined by the presence or absence of alternative exons that also affect their dynamic behavior in different cellular compartments, as measured by fluorescence correlation spectroscopy. Expression of A2b is also differentially regulated with age, species and cellular development. Furthermore, coinjection of isoform‐specific antibodies and labeled RNA into live oligodendrocytes shows that the assembly of RNA granules is impaired by blockade of A2b function. These findings suggest that neural cells modulate mRNA trafficking by regulating alternative splicing of hnRNP A2/B1 and controlling expression levels of A2b, which may be the predominant mediator of cytoplasmic‐trafficking functions. These findings highlight the importance of considering isoform‐specific functions for alternatively spliced proteins.  相似文献   

14.
NTAK (neural- and thymus-derived activator for ErbB kinases), also known as neuregulin-2, is a member of the epidermal growth factor (EGF) family, which binds directly to ErbB3 and ErbB4 and transactivates ErbB2. Because ErbB signaling has been implicated in various angiogenic mechanisms, the effect of NTAK (which has at least nine isoforms due to alternative splicing) in angiogenesis is explored. One isoform, NTAKgamma, inhibited cell growth in terms of DNA synthesis and cell numbers in vascular endothelial cells specifically, whereas NTAKalpha and beta had no activity. On the other hand, NTAKgamma secreted by transfected MDA-MB-231 cells inhibited endothelial cell growth, and NTAKgamma expressed in endothelial cells by adenovirus infection suppressed cell growth in a dose-dependent manner. The EGF-like domain of NTAKgamma did not have this activity. The NTAKdelta isoform, which had the Ig-like domain but not the EGF-like domain, inhibited proliferation of endothelial cells. NTAKdelta prevented hyper-phosphorylation of the retinoblastoma tumor suppressor protein and caused G(1) arrest in endothelial cells. Both NTAKgamma and delta isoforms displayed anti-angiogenic activity in the chick embryo chorioallantoic membrane in vivo. These results suggest that the active site of NTAK is localized outside of the EGF-like domain but within the N-terminal region, including the Ig-like domain, of NTAK.  相似文献   

15.
Mounting experimental evidence has suggested that the trophic environment of cells in culture is an important determinant of their vulnerability to the cytotoxic effects of reactive oxidants such as peroxynitrite (ONOO(-)). However, acidic fibroblast growth factor (FGF-1)-induced signaling renders some cells more sensitive and others resistant to the cytotoxic effects of ONOO(-). To determine whether alternatively spliced fibroblast growth factor receptor (FGFR-1) isoforms are responsible for this differential response, we have stably transfected FGFR-negative rat brain-derived resistant vessel endothelial cells (RVEC) with human cDNA sequences encoding either FGFR-1 alpha or FGFR-1 beta. FGF-1 treatment of RVEC(R-1 alpha) transfectants enhanced ONOO(-)-mediated cell death in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and p38 MAP kinase activities and independent of Src-family kinase (SFK) activity. FGF-1 treatment of RVEC(R-1 beta) transfectants inhibited the cytotoxic effects of ONOO(-) in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and SFK activities and independent of p38 MAP kinase activity. FGF-1-induced preactivation of both FGFR-1 tyrosine and Erk 1/2 kinases was detected in both RVEC(R-1 alpha) and RVEC(R-1 beta) transfectants. FGF-1-induced preactivation of p38 MAPK was restricted to RVEC(R-1 alpha) transfectants, whereas, ligand-induced preactivation of SFK was limited to RVEC(R-1 beta) transfectants. Collectively, these results both reemphasize the role of extracellular trophic factors and their receptor-mediated signaling pathways during cellular responses to oxidant stress and provide a first indication that the alternatively spliced FGFR-1 isoforms induce differential signal transduction pathways.  相似文献   

16.
17.
18.
Human endothelin-converting enzyme (ECE-1) has been shown to exist as three isoforms (ECE-1a, ECE-1b and ECE-1c) diverging in their N-terminal sequence and displaying different patterns of subcellular localization. We report here the cloning of ECE-1d, a novel isoform of 767 amino acids, which is generated from the same gene via the existence of an additional promoter located upstream from the third exon of the ECE-1 gene. ECE-1d converting activity is comparable to that of the other three isoenzymes. In contrast to ECE-1b, ECE-1d is expressed at the cell surface, although less strongly than ECE-1a. We have also shown, by identifying ECE-1b and ECE-1d in rat, that the ECE-1 diversity is conserved between human and rodent, suggesting its physiological relevance. The mRNA levels of the four isoforms were assessed in the two species in various cell types, revealing some differences. In particular, the ECE-1a isoform, strongly expressed at the plasma membrane, was found to be highly expressed in primary cultures of endothelial cells but absent from primary cultures of smooth muscle cells.  相似文献   

19.
The role of platelet endothelial cell adhesion molecule-1 (PECAM-1) in endothelial cell-cell interactions and its contribution to cadherin-mediated cell adhesion are poorly understood. Such studies have been difficult because all known endothelial cells express PECAM-1. We have used Madin-Darby canine kidney (MDCK) cells as a model system in which to evaluate the role of PECAM-1 isoforms that differ in their cytoplasmic domains in cell-cell interactions. MDCK cells lack endogenous PECAM-1 but form cell-cell junctions similar to those of endothelial cells, in which PECAM-1 is concentrated. MDCK cells were transfected with two isoforms of murine PECAM-1, Delta15 and Delta14&15, the predominant isoforms expressed in vivo. Expression of the Delta15 isoform resulted in apparent dedifferentiation of MDCK cells concomitant with the loss of adherens junctions, down-regulation of E-cadherin, alpha- and beta-catenin expression, and sustained activation of extracellular regulated kinases. The Delta15 isoform was not concentrated at cell-cell contacts. In contrast, the Delta14&15 isoform localized to sites of cell-cell contact and had no effect on MDCK cell morphology, cadherin/catenin expression, or extracellular regulated kinase activity. Thus, the presence of exon 14 in the cytoplasmic domain of PECAM-1 has dramatic effects on the ability of cells to maintain adherens junctions and an epithelial phenotype. Therefore, changes in the expression of exon 14 containing PECAM-1 isoforms, which we have observed during development, may have profound functional consequences.  相似文献   

20.
Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号