首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surfactant-associated glycoproteins A, 38 (A3), 32 (A2) and 26 (A1) kDa, pI (4.2-4.8), were identified as related proteins present in surfactant isolated from rat lung lavage fluid. Differences in size and charge among surfactant-associated glycoproteins A were related to differences in glycosylation as determined by reduction of the larger forms (38 and 32 kDa) to 26 kDa by endoglycosidase F and by increased isoelectric points of the glycosylated forms after treatment with neuraminidase. Synthesis and secretion of surfactant-associated glycoproteins A and precursors were demonstrated in purified rat Type II epithelial cells by immunoprecipitation of [35S]methionine-labelled proteins with anti-surfactant-associated glycoprotein A antisera. In pulse-chase experiments, labelled proteins 26-34 kDa, appeared within 10 min and smaller forms co-migrated with surfactant-associated glycoprotein A from alveolar lavage. The relative abundance of the larger molecular mass forms (30-34 kDa, pI 4.8) increased at later times up to 3 h. More acidic mature forms, which co-migrated with surfactant-associated glycoproteins A2 and A3 in surfactant (38 and 32 kDa), were readily detectable in the media, but were not abundant forms in lysates of labelled Type II cells after 1-3 h of incubation. Primary translation products of surfactant-associated glycoprotein A were immunoprecipitated with monospecific anti-surfactant-associated glycoprotein A antiserum after in vitro translation of poly(A)+ mRNA isolated from adult rat lung. The immunoprecipitated translation product migrated at 26 kDa, pI 4.8, and migrated slightly faster than surfactant-associated glycoprotein A1 from surfactant. Treatment of surfactant-associated glycoprotein A with bacterial collagenase resulted in proteolytic fragments 23-20 kDa, pI 4.2-4.8, which no longer underwent sulfhydryl-dependent cross-linking, suggesting that the collagen-like domain was required for the sulfhydryl-dependent oligomerization. Surfactant-associated glycoproteins A are synthesized by rat Type II epithelial cells as pre-proteins, 26-34 kDa. Larger forms result primarily from N-linked glycosylation of the 26 kDa primary translation product. Mature, more acidic forms result from further addition of sialic acid.  相似文献   

2.
We have identified four surface 83 kDa proteins of pI values 6.3, 6.4, 6.5 and 6.6 in T. cruzi trypomastigotes which specifically bind to rat heart myoblasts. These proteins were purified by isoelectric focusing and anion-exchange chromatography in an FPLC system. These 83 kDa proteins inhibit the attachment of trypomastigotes to myoblasts in a concentration-dependent manner, indicating that these trypomastigote proteins mediate the attachment of trypomastigotes to heart myoblasts.  相似文献   

3.
Con A acceptor glycoproteins were analyzed by 2D-PAGE and 125I-Con A overlay in three squamous carcinoma cell lines and compared with those in the simian virus (SV40)-transformed keratinocyte cell line SVK-14 and in normal keratinocytes. The majority of the glycoproteins identified by this technique were expressed at similar levels in all of the cells examined, independent of the culture conditions used. A cell surface glycoprotein gp34 (MW 34 kDa, pI 5.1) was increased in the tumor cells compared with normal keratinocytes and expression varied with the culture density. Another glycoprotein, gp21 (MW 21 kDa, pI 6.3), was found to be increased in expression in normal keratinocytes and stratified hyperconfluent cultures of squamous carcinoma cell lines. This paper describes the potential of this technique to identify membrane glycoproteins which may be expressed as a function of proliferation or differentiation.  相似文献   

4.
Most surface glycoproteins expressed by mammalian-stage forms of Trypanosoma cruzi are homologous to the parasite's trans-sialidase and therefore are members of the parasite's trans-sialidase superfamily. Few members of this superfamily have trans-sialidase activity. The SA85-1 family is a subfamily of the trans-sialidase superfamily whose members lack trans-sialidase activity. The function of these non-trans-sialidase members remains unknown. In this report a series of monoclonal and polyclonal antibodies to the SA85-1 glycoproteins is presented. The mAbs define distinct subgroups of SA85-1 glycoproteins, and these distinct subgroups are simultaneously expressed by individual trypomastigotes, supporting previous studies indicating that multiple SA85-1 glycoproteins and trans-sialidase superfamily glycoproteins are simultaneously expressed by each trypomastigote. In addition, the antibodies define two major subsets of the SA85-1 family (subset 1 and subset 2) based on differences in migration in SDS-PAGE; the subsets do not appear to be created by differences in glycosylation. Subset 1 migrates slower and is spontaneously released or shed preferentially from the parasite surface compared to subset 2. In addition, subset 1 is attached to the trypomastigote surface by a GPI linkage. Since these glycoprotein subsets are differentially expressed, they may have different functions.  相似文献   

5.
Trypanosomes express an enzyme called trans-sialidase (TS), which enables the parasites to transfer sialic acids from the environment onto trypanosomal surface molecules. Here we describe the purification and characterization of two TS forms from the African trypanosome Trypanosoma congolense. The purification of the two TS forms using a combination of anion exchange chromatography, isoelectric focusing, gel filtration, and subsequently, antibody affinity chromatography resulted, in both cases, in the isolation of a 90-kDa monomer on SDS-PAGE, which was identified as trans-sialidase using micro-sequencing. Monoclonal antibody 7/23, which bound and partially inhibited TS activity, was found in both cases to bind to a 90-kDa protein. Both TS forms possessed sialidase and transfer activity, but markedly differed in their activity ratios. The TS form with a high transfer-to-sialidase activity ratio, referred to as TS-form 1, possessed a pI of pH 4-5 and a molecular mass of 350-600 kDa. In contrast, the form with a low transfer-to-sialidase activity ratio, referred to as TS-form 2, exhibited a pI of pH 5-6.5 and a molecular mass of 130-180 kDa. Both TS forms were not significantly inhibited by known sialidase inhibitors and revealed no significant differences in donor and acceptor substrate specificities; however, TS-form 1 utilized various acceptor substrates with a higher catalytic efficiency. Interestingly, glutamic acid-alanine-rich protein, the surface glycoprotein, was co-purified with TS-form 1 suggesting an association between both proteins.  相似文献   

6.
Surfactant-associated glycoproteins A were identified by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude surfactant from canine alveolar lavage: an unglycosylated form (protein A1), 27,000-28,000 daltons; glycoprotein A2, 32,000-34,000 daltons; and glycoprotein A3, 37,000-38,000 daltons; pH at isoelectric point (pI) 4.5-5.0. Glycoproteins A2 and A3 were electroeluted and used to prepare a monospecific antiserum that identified proteins A1, A2, and A3 in immunoblots of crude surfactant obtained from dog lung lavage. This antiserum precipitated several proteins from in vitro translated canine lung poly(A)+ mRNA; proteins of 27,000 daltons, pI 5.0, and 28,000 daltons, pI 4.8-5.0, which precisely comigrated with proteins A1 from canine surfactant. Cotranslational processing of the primary translation products by canine pancreatic microsomal membranes resulted in larger proteins of 31,000-34,000 daltons, pI 4.8-5.0. Treatment of these processed forms of glycoprotein A with endoglycosidase F, to remove N-linked carbohydrate, resulted in proteins of 27,000-28,000 daltons which precisely comigrated with surfactant protein A1. These observations demonstrate that the polypeptide precursors to the glycoproteins A complex are extensively modified by addition of asparagine N-linked complex carbohydrate and are subsequently secreted as glycoproteins A2 and A3.  相似文献   

7.
Numerous studies have indicated that treatment of Leydig cells with gonadotropin results in increased levels of intracellular cAMP, binding of cAMP to and activation of protein kinase A, phosphorylation of proteins, synthesis of new proteins and eventually, stimulation of steroidogenesis. In addition, recent studies have indicated that protein phosphorylation is an indispensable event in the production of steroids in response to hormone stimulation in adrenal cells. Because of the important role of phosphorylation in steroidogenic regulation, we investigated the effects of human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP), forskolin and the phorbol ester, phorbol-12-myristate 13-acetate (PMA) on protein phosphorylation in MA-10 mouse Leydig tumor cells. Cells were stimulated with different steroidogenic compounds in the presence of [32P]orthophosphoric acid for 2 h and phosphoproteins analyzed by two-dimensional polyacrylamide gel-electrophoresis (PAGE). Results demonstrated an increase in the phosphorylation of four proteins (22 kDa, pI 5.9; 24 kDa, pI 6.7 and 30 kDa, pI 6.3 and 6.5) in response to 34 ng/ml hCG, 1 mM dbcAMP and 100 microM forskolin. Conversely, treatment of cells with PMA increased the phosphorylation of only one of these proteins (30 kDa, pI 6.3). At least two of these proteins (30 kDa, pI 6.5 and 6.3) appear to be identical to proteins which we and others have shown to be synthesized in response to trophic hormone stimulation in adrenal, luteal and Leydig cells. In addition, they also appear to be identical to adrenal cell mitochondrial proteins demonstrated to be phosphorylated in response to ACTH. These data indicate that proteins similar to those phosphorylated in adrenal cells in response to ACTH are phosphorylated in hormone stimulated testicular Leydig cells and that these proteins may be involved in steroidogenic regulation.  相似文献   

8.
Detection of Trypanosoma cruzi in man becomes particularly difficult during the chronic stage of Chagas disease because of the low parasitemia. We were able to develop a simple and straightforward method for determining the concentration of T. cruzi antigens in urine using nitrocellulose micellar suspension (Nitrocell-Mr, Polychaco Argentina) and for their subsequent detection through a "latex" type agglutination test. The latex used was an esferocell nitrocellulose suspension (Esferocell-Mr, Polychaco). Specific antigens for T. cruzi were detected in 54 of 58 urine samples from chronic chagasic patients. The antigens characterized by affinity chromatography and SDS-PAGE were glycoproteins with apparent molecular weights (and pIs) of 100 kDa (pI 5 to 5.5), 80 kDa (pI 6.0), and 50 kDa (pI 6.5 to 7.0). This method is practical and fulfills the requirement of large-scale epidemiological studies. It is also helpful in cases of conflictive serology.  相似文献   

9.
To study the fate of the yolk glycoproteins found in eggs and embryos of the sea urchin, Strongylocentrotus purpuratus, a polyclonal antibody to a 90-kDa polymannose glycoprotein found in the embryo was prepared. Immunoblot analysis of total proteins over the course of development showed that this antibody recognized a family of glycoproteins. Concomitant with the disappearance of the major 160-kDa yolk glycoprotein of the egg during embryogenesis, glycoproteins with a lower molecular mass appeared. These glycoproteins (115, 108, 90, 83, and 68 kDa) were purified from S. purpuratus and analyzed by limited proteolysis and peptide mapping. This analysis revealed that these glycoproteins were cleavage products derived from the major yolk glycoprotein. The antibody to the 90-kDa glycoprotein in S. purpuratus embryos was used to identify a homologous set of yolk glycoproteins with similar molecular masses in the embryos of three other species in the class Echinoidea: Arbacia punctulata, Lytechinus pictus, and Dendraster excentricus. However, eggs from other echinoderm classes and from Xenopus laevis, Drosophila melanogaster, and the chicken did not contain any cross-reactive molecules. Cross-reactivity within the class Echinoidea was not due to a common carbohydrate epitope, because the antibody recognized the glycoproteins even after the N-linked carbohydrate side chains were enzymatically removed. The major yolk glycoprotein (160-170 kDa) from each of the three sea urchin species was purified and analyzed. Comparison of the physical and chemical properties of these glycoproteins revealed striking similarities in pI and in amino acid and monosaccharide composition. The results of peptide mapping also supported the conclusion that the 160- to 170-kDa glycoproteins from the four echinoids are structurally homologous glycoproteins containing N-linked polymannose chains. Immunolocalization by electron microscopy in S. purpuratus showed that the yolk glycoproteins remained within the yolk platelet throughout development, and that externalization of the 160-kDa glycoprotein or its cleavage products was not detectable.  相似文献   

10.
Two glycoproteins were isolated from lysates of thioglycollate-stimulated, murine peritoneal macrophages by affinity chromatography on immobilized Griffonia simplicifolia I lectin and by preparative SDS/PAGE. The glycoproteins were readily labeled on the surface of intact macrophages with 3H and 125I. The labeled glycoproteins migrated as broad bands of molecular mass 92-109 kDa and 115-125 kDa. The mobility of the glycoproteins decreased only slightly after reduction with dithiothreitol, indicating the absence of intersubunit disulfide bridges. The 92-kDa and 115-kDa glycoproteins had pI 5.2-5.4 and pI less than or equal to 4, respectively. Digestion of both glycoproteins with alpha-galactosidase released 23% of their 3H content and abolished their ability to bind to the G. simplicifolia I lectin, showing that they contain terminal alpha-D-galactosyl groups. After reduction with 2-mercaptoethanol, each glycoprotein fraction was sensitive to N-glycanase; the 115-kDa glycoproteins produced a smear with the front at approximately 67 kDa, whereas the 92-kDa glycoprotein gave two bands of 61 kDa and 75 kDa. Unreduced glycoproteins were insensitive to N-glycanase, suggesting the presence of intramolecular disulfide bonds. Although each glycoprotein fraction was sensitive to endoglycosidase H, this enzyme produced only slight changes in molecular mass when compared with N-glycanase. From these results as well as from the specificity of the enzymes involved, it is concluded that each glycoprotein fraction contains complex-type oligosaccharides and a small amount of high-mannose and/or hybrid-type oligosaccharides. While each glycoprotein fraction was bound to Datura stramonium lectin, they failed to react with anti-[i-(Den)] serum and their digestion with endo-beta-galactosidase did not cause a band shift in SDS/PAGE. Taken together, these results suggest the presence of N-acetyllactosamine units which are not arrayed in linear form but occur as single units, bound either to C2 and C6, or to C2 and C4, or both, of outer mannosyl residues on complex-type oligosaccharides. The glycoprotein(s) fraction precipitated with anti-[I (Step)] serum, suggesting the presence of branched lactosaminoglycans. Digestion of both glycoprotein fractions with a mixture of sialidase and O-glycanase did not alter their mobility in SDS/PAGE, suggesting a lack or low content of O-linked trisaccharides and tetrasaccharides. Each glycoprotein fraction was bound specifically to Sambucus nigra and Maackia amurensis immobilized lectins, indicating the presence of sialic acid linked alpha 2,6 to subterminal D-galactose or N-acetylgalactosamine residues, and alpha 2,3 to N-acetyllactosamine residues, respectively.  相似文献   

11.
Alpha2,3-sialylation of the lactosamine type N-glycans with trans-sialidase from Trypanosoma cruzi is reported. Trans-sialidase (160 kDa, pI 5.35-5.65) and its catalytic fragment (70 kDa, pI 6.0-6.3) were isolated from T. cruzi cells and immobilized on ConA-Sepharose. The resulting preparation retained activity for several months and was repeatedly used for obtaining mono-, di-, tri-, and tetrasialylated 7-amino-4-metylcoumarine-labeled oligosaccharides with various numbers of antennas and for alpha2,3-sialylation of glycans within glycoproteins and neoglycoconjugates.  相似文献   

12.
Summary Localization of heat shock proteins (Hsp) in endomembranes and determination of whether they are integral or peripheral membrane proteins will aid in understanding the physiological function of the heat shock response. Radiolabeled endomembranes (endoplasmic reticulum, Golgi, and plasma membrane), obtained by sucrose gradient centrifugation of heat-shocked soybean (Glycine max L.) root tissue were solubilized and the polypeptides separated by two-dimensional IEF-SDS-PAGE. Autoradiography revealed three groups of Hsp. A diverse group fo 25 low mol wt Hsp (18 to 24 kDa) with isoelectric point (pI) between 5 and 7; an intermediate mol wt group (30 to 47 kDa) with pI of 5.5 to 6.0; and a group of two high mol wt Hsp (75 to 80 kDa) with pI 4.8 to 5.2. The plasma membrane fraction lacked the Hsp pair of 47 kDa detected in the endoplasmic reticulum and Golgi fractions but possessed a unique Hsp of 30 kDa, pI 5.5.Comparison of soluble and microsome fractions revealed a difference in the pattern of the low mol wt Hsp class. The soluble fraction contained Hsp of 16–20 kDa with pI between 5 and 7.8 while the microsome fraction was characterized by Hsp of 18–24 kDa with pI between 5.8 and 6.5.The microsomal Hsp were not released by 1 M KCl. Treatment of the microsome fraction with Triton X-100 selectively released several Hsp, and Na2CO3 treatment removed additional Hsp from the membrane fraction.Abbreviations Hsp heat-shock protein(s) - GA Golgi apparatus - PM plasma membrane - 2 D two-dimensional  相似文献   

13.
This study was designed to explore the composition of the equine zona pellucida (EZP) by one- and two-dimensional polyacrylamide gel electrophoresis (1D- and 2D-PAGE), silver staining and immunoblotting techniques. Antral follicles palpable on frozen-thawed equine ovaries were aspirated with a needle and syringe, and the resultant follicular fluid, cellular material and oocytes were pooled. Oocytes were placed in Petri dishes, moved by narrow-bore pipette to droplets of phosphate-buffered saline (PBS) and mechanically cleaned of cumulus cells. The EZP from these collected oocytes was solubilized, and then analysed by 1D- and 2D-PAGE. Silver stained 2D-PAGE of the EZP revealed the presence of three EZP glycoprotein families of apparent molecular mass ranges of 93-120 kDa, 73-90 kDa and 45-80 kDa. Immunoblot analysis of EZP glycoproteins resolved by 2D-PAGE using rabbit antisera against pig zonae pellucidae (R alpha HSPZ) confirmed the presence of three EZP glycoprotein families and established the existence of common epitopes between equine and porcine ZP glycoproteins. Further immunodetection using 2D-PAGE-separated glycoproteins illustrated that the 45-80 kDa family is recognized by the monoclonal antibody R5, developed against the porcine ZP glycoprotein of molecular mass 55-120 kDa. Guinea-pig antiserum against endo-beta-galactosidase-treated rabbit ZP 55 kDa glycoprotein (R55K), which specifically recognizes the rabbit ZP glycoprotein with the lowest molecular mass, also recognized the EZP 45-80 kDa glycoprotein family. Guinea-pig polyclonal antisera developed against total heat-solubilized rabbit ZP (GP alpha HSRZ) recognized the 73-90 kDa EZP glycoprotein family exclusively. After heat solubilization and treatment of EZP with endo-beta-galactosidase to remove polylactosaminoglycans, silver stained 1D-PAGE again demonstrated the presence of three glycoproteins with apparent molecular masses of 60, 75 and 90 kDa. The partially deglycosylated 60 kDa equine glycoprotein is recognized on immunoblot by the monoclonal antibody R5; the 75 kDa EZP glycoprotein is recognized by GP alpha HSRZ; and all three EZP glycoproteins separated by 1D-PAGE are recognized by R alpha HSPZ. These data add further support to the concept of cross-species zona pellucida glycoprotein antigenicity.  相似文献   

14.
Gel electrophoresis, lectin affinity blotting, and endoglycosidase H digestion have been used to analyze the glycoprotein profiles of bloodstream and procyclic forms of Trypanosoma brucei brucei and T. b. gambiense. Proteins resolved by polyacrylamide gel electrophoresis were stained with silver nitrate or electrophoretically transferred to nitrocellulose and probed with a horseradish peroxidase conjugate of either concanavalin A or wheat germ agglutinin. Silver staining showed, as expected, that the expression of the variant specific glycoprotein was restricted to the bloodstream forms. Twenty-three concanavalin A binding proteins were resolved in blots of bloodstream forms. Concanavalin A binding molecules corresponding in electrophoretic mobility to 21 of these 23 bloodstream form glycoproteins were detected in blots of procyclic forms. The two concanavalin A binding glycoproteins present only in bloodstream form extracts were variant specific glycoprotein and an 81-kDa protein designated glycoprotein 81b. One concanavalin A binding molecule of 84 kDa, glycoprotein 84p, was detected only in procyclic forms. The 19 major wheat germ agglutinin binding glycoproteins expressed by bloodstream forms were not detected in procyclic forms; only small proteins or protein fragments in procyclic form extracts bound wheat germ agglutinin. Incubating transferred proteins in endoglycosidase H eliminated subsequent binding of concanavalin A to most of the 22 common glycoproteins of bloodstream forms. Three major concanavalin A binding glycoproteins of bloodstream forms, variant specific glycoprotein, glycoprotein 81b, and a 110-kDa molecule (glycoprotein 110b), and other minor glycoproteins carried sugar chains that resisted endoglycosidase H digestion. In contrast, concanavalin A did not bind to any procyclic form glycoproteins, including a 110-kDa concanavalin A binding molecule (glycoprotein 110p) after endoglycosidase H treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
One- and two-dimensional electrophoresis of Nicotiana tabacum pollen and pollen tube proteins confirmed that a new protein is preferentially synthesized during pollen germination and tube growth and becomes the most abundant protein in pollen tubes. Analysis of proteins extracted with sodium dodecyl sulfate (SDS) from different pollen tube fractions showed that it is the most abundant non-covalently bound wall protein, characterized by molecular mass of 69 kDa, pI between 7.9 and 8.2, and glycosylation with glucose and/or mannose. Amino acid analysis revealed relative abundance of serine, glutamic acid and glycine, but did not show the presence of hydroxyproline. According to all these characteristics, it cannot be classified as an extensin-like protein. Another prominent wall-bound glycoprotein has a molecular mass of 66 kDa and the same pI as the 69 kDa glycoprotein. These two glycoproteins are similar also in ConA binding, rate of synthesis, and rapid incorporation into pollen tube walls. Their synthesis is strongly reduced by tunicamycin and this inhibition results in the occurrence of new polypeptides in the range of 57–61 kDa. Tunicamycin also inhibited pollen tube growth. At 10 ng ml-1 and 50 ng ml-1 the inhibitor reduced pollen tube mass after 24 h of culture by 30% and 85%, respectively. This indicates that tobacco pollen presents a system highly sensitive to tunicamycin and that cotranslational N-linked glycosylation on the rough endoplasmic reticulum is required for 66 and 69 kDa glycoprotein formation and for pollen tube growth. Although other proteins appear during pollen germination and tube growth, the new proteins occur at low levels and seem to originate through modifications of preexisting polypeptides. In contrast to 69 and 66 kDa proteins, most proteins detected by [14C]amino acid incorporation and fluorography of gels were not revealed by Coomassie blue staining.  相似文献   

16.
Glycosylation and secretion of surfactant-associated glycoprotein A   总被引:1,自引:0,他引:1  
Synthesis of glycoprotein A, the major surfactant-associated protein, was demonstrated in Type II epithelial cells isolated from rat lung. Predominant, secreted forms migrated as glycoproteins with asparagine-linked, complex-type oligosaccharides (32,000-36,000 daltons, pI 4.2-4.8). Primary in vitro translation products of the glycoprotein migrated as five distinct proteins of approximately 26,000 daltons which were processed by pancreatic microsomal membranes in vitro to 30,000-34,000-dalton, endoglycosidase F-sensitive forms. These in vitro processed forms of glycoprotein A co-migrated with intracellular forms immunoprecipitated from [35S]methionine-labeled, Type II cells. Pulse-chase experiments with [35S]methionine-labeled cells demonstrated rapid synthesis of endoglycosidase H-sensitive precursors of 34,000 daltons, pI 4.7-4.8, which were neither secreted from Type II cells nor detected in surfactant from alveolar lavage. These high-mannose forms were slowly processed to more acidic, endoglycosidase H-resistant, neuraminidase-sensitive forms. At between 10 and 180 min, fully sialylated or other endoglycosidase H-resistant forms were a minor fraction of intracellular glycoprotein A. After 16 h, intracellular glycoproteins A were primarily present as endoglycosidase H-resistant forms. Secretion of mature, sialylated, glycoprotein A was first detected 1 h after labeling, and was also readily detected after 16-24 h chase period. Tunicamycin, which blocks N-linked protein glycosylation, resulted in synthesis of three major 26,000-dalton proteins which co-migrated with the nonglycosylated, surfactant-associated proteins A1 present in surfactant from alveolar lavage and with the major in vitro translation products of rat lung poly(A+) mRNA. Tunicamycin inhibited secretion of glycoprotein A. Swainsonine, which inhibits Golgi alpha-mannosidase II, completely inhibited synthesis of the fully sialylated molecule. Swainsonine produced forms of glycoprotein A which were both neuraminidase- and endoglycosidase H-sensitive and were readily secreted. Monensin, an ionophore that alters protein transport, markedly inhibited intracellular sialylation and secretion. These studies demonstrate that pulmonary Type II cells rapidly synthesize and process surfactant-associated glycoprotein A precursors to endoglycosidase H-sensitive forms, which are slowly sialylated prior to secretion.  相似文献   

17.
An estrogen-regulated 52-kDa glycoprotein secreted by MCF7 breast cancer cells was first purified from serum-free conditioned medium by concanavalin-A--Sepharose (ConA--Sepharose). The 13% pure protein was then used to obtain monoclonal antibodies to the 52-kDa protein [Garcia et al. (1985) Cancer Res. 45, 709-716]. Using ConA--Sepharose and monoclonal antibody affinity chromatographies, the secreted 52-kDa protein was finally purified to homogeneity as verified by silver staining of sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) and one single N-terminal amino acid. The purification factor was approximately 1400 and the yield 40%. The same two-step procedure, applied to MCF7 cell extracts, yielded four immunologically related proteins of 52 kDa, 48 kDa, 34 kDa and 17 kDa, which were purified 1250-fold with a yield of 30%. These components were further separated by high-performance liquid chromatography gel filtration under denaturing conditions. The final products were homogeneous on the basis of silver-stained SDS-PAGE and gel filtration. However, isoelectrofocusing showed that the pI of the secreted 52-kDa protein and the cellular 34-kDa protein varied from 5.5 to 6.5. Amino acid analysis of the secreted and the related cellular 34-kDa protein is given. Western immunoblotting, pulse chase studies and post-translational studies indicate that the 52-kDa protein is the precursors of a lysosomal enzyme which is partially secreted and partially processed into smaller cellular forms.  相似文献   

18.
Five forms of xyloglucan endotransglycosylase/hydrolase (XTH) differing in their isoelectric points (pI) were detected in crude extracts from germinating nasturtium seeds. Without further fractionation, all five forms behaved as typical endotransglycosylases since they exhibited only transglycosylating (XET) activity and no xyloglucan-hydrolysing (XEH) activity. They all were glycoproteins with identical molecular mass, and deglycosylation led to a decrease in molecular mass from approximately 29 to 26.5 kDa. The major enzyme form having pI 6.3, temporarily designated as TmXET(6.3), was isolated and characterized. Molecular and biochemical properties of TmXET(6.3) confirmed its distinction from the XTHs described previously from nasturtium. The enzyme exhibited broad substrate specificity by transferring xyloglucan or hydroxyethylcellulose fragments not only to oligoxyloglucosides and cello-oligosaccharides but also to oligosaccharides derived from β-(1,4)-d-glucuronoxylan, β-(1,6)-d-glucan, mixed-linkage β-(1,3; 1,4)-d-glucan and at a relatively low rate also to β-(1,3)-gluco-oligosaccharides. The transglycosylating activity with xyloglucan as donor and cello-oligosaccharides as acceptors represented 4.6%, with laminarioligosaccharides 0.23%, with mixed-linkage β-(1,3; 1,4)-d-gluco-oligosaccharides 2.06%, with β-(1,4)-d-glucuronoxylo-oligosaccharides 0.31% and with β-(1,6)-d-gluco-oligosaccharides 0.69% of that determined with xyloglucan oligosaccharides as acceptors. Based on the sequence homology of tryptic fragments with the sequences of known XTHs, the TmXET(6.3) was classified into group II of the XTH phylogeny of glycoside hydrolase family GH16.  相似文献   

19.
The objective of this study was to evaluate the low weight (10-30 kDa) protein profile of bovine seminal plasma using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and to determine if any of these proteins was associated with semen freezability. Seminal plasma was collected from 16 bulls of high or low semen freezability. Twelve protein spots were identified from the 2D gel (15%); six of these were present in all samples. Of the 12 proteins found, three spots, present in all samples, 3 (15-16 kDa), 5 (16-17 kDa), and 7 (10-12 kDa) had nonsignificant variation among bulls, regardless of their freezability classification. Four proteins were more abundant (P<0.05) in seminal plasma samples collected from bulls with high semen freezability than in samples of bulls with low semen freezability: the spots 3 (15-16 kDa, pI 4.7-5.2), 7 (11-12 kDa, pI 4.8-4.9), 11 (13-14 kDa, pI 4.0-4.5), and 23 (20-22 kDa, pI 4.8-5.2). On the other hand, spot 25 (25-26 kDa, pI 6.0-6.5) was more abundant (P<0.05) on seminal plasma samples from bulls with low semen freezability. The N-terminus sequence of protein 7 was identical to the acidic seminal fluid protein (aSFP). Protein 23 (after trypsin digestion) had structural similarity to bovine clusterin. We concluded that there were differences in the seminal plasma protein profile from bulls with low and high semen freezability; aSFP, clusterin, proteins 3 and 11 may be used as semen freezability markers; and protein 25 was related to low semen freezability.  相似文献   

20.
To identify the surface antigens of human sperm recognized by antisera from immune infertility patients and vasectomized men, we labeled sperm surface proteins with 125I- and used patient antisera for immunoprecipitation. Sera were studied from 27 infertile males, 18 infertile females, and 4 vasectomized males, each possessing anti-sperm antibodies detected by immunobead binding. Sera from different infertile males, different infertile females, and vasectomized males were remarkably similar in their surface antigen recognition. The different sera specifically immunoprecipitated the same small group of 125I-labeled surface proteins, which included polypeptides in the region 90 kDa, 40-45 kDa, and 26 kDa. Treatment with N-glycanase showed that the proteins of 90 kDa, 40-45 kDa, and 26 kDa were glycoproteins with N-linked carbohydrate. The immunoprecipitated 125I-labeled proteins and the total extract of 125I-labeled surface proteins were compared on two-dimensional (2D) gels. The results show the 90 kDa polypeptide is a major sperm surface component, whereas 40-45 kDa and 26 kDa polypeptides are minor components. The 2D gel comparison also indicates that 90 kDa, 40-45 kDa, and 26 kDa are a small subset of the total ensemble of sperm surface proteins. Clinical data suggest antibodies to these few proteins interfere with sperm function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号