首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Binding of myelin inhibitors to the NgR1/p75/LINGO-1 signaling complex activates RhoA to mediate the inhibition of axonal outgrowth. The nerve growth factor receptor p75, a TNF family receptor, is absent or poorly expressed in certain types of neurons that respond to myelin inhibitors, thereby prompting speculation that other TNF family receptors are involved in the NgR1 complex. Troy/Taj is an orphan TNF family receptor that is broadly expressed in postnatal and adult neurons. Troy binds to NgR1 and can functionally replace p75 in the p75/NgR1/LINGO-1 complex to activate RhoA and block neurite outgrowth in the presence of myelin inhibitors. Neurons from Troy-deficient mice are more resistant to the suppressive action of the myelin inhibitors. The discovery of TROY function in axon growth is an important step for understanding the complex regulation of axonal regeneration by diverse members of the TNF receptor family.  相似文献   

2.
ObjectiveTo establish an axon regeneration regulatory network for optimal selection, and explore the role of low intensity pulsed ultrasound in the network.MethodsThe axon regeneration regulatory network involving axon regeneration-related proteins NGF, BDNF and PirB was constructed by using GO and KEGG. The maximum possible pathway acting on axon regeneration was screened by Bayesian network theory. The node of low - intensity pulsed ultrasound in NGF - involved axon regeneration network was complemented by combining literature methods.ResultsThe NGF, BDNF and PirB-involved axonal regeneration regulatory pathway was successfully constructed. The low intensity pulsed ultrasound played a role in axon regeneration by acting on ERK1/2-CREB pathway and GSK-3β. NGF-TrKA-Rap1-ERK1/2-CREB-Bcl-2 was optimized as optimal pathway by Bayesian theory.ConclusionThe regulatory pathway of axon regeneration involving nerve growth related factors and low intensity pulsed ultrasound was initially established, which provided a theoretical basis for further study of axon regeneration, and also new ideas for action of low intensity pulsed ultrasound on axon regeneration regulatory pathway.  相似文献   

3.
The reggies/flotillins are oligomeric scaffolding proteins for membrane microdomains. We show here that reggie-1/flotillin-2 microdomains are organized along cortical F-actin in several cell types. Interaction with F-actin is mediated by the SPFH domain as shown by in vivo co-localization and in vitro binding experiments. Reggie-1/flotillin-2 microdomains form independent of actin, but disruption or stabilization of the actin cytoskeleton modulate the lateral mobility of reggie-1/flotillin-2 as shown by FRAP. Furthermore, reggie/flotillin microdomains can efficiently be immobilized by actin polymerisation, while exchange of reggie-1/flotillin-2 molecules between microdomains is enhanced by actin disruption as shown by tracking of individual microdomains using TIRF microscopy.  相似文献   

4.
Reggie-1 and reggie-2 are highly conserved and widely expressed proteins associated with membrane rafts. The molecular function of reggies remains to be clarified, but recent data indicate that they are involved in various cellular processes such as insulin signaling, phagocytosis and actin remodeling. However, there is discrepancy in the literature if reggies are associated with caveolae or non-caveolar rafts. Reggies are expressed and raft associated also in many cells which do not contain caveolae, such as neurons and lymphocytes. However, it is not clear if the function or localization of reggies are dependent on the presence of caveolae and expression of caveolin-1 protein. In this study, we directly addressed this question in epithelial cells. We could show that ectopic expression of caveolin-1 does not result in any change in the cellular localization of reggie-1, which is present at the plasma membrane also in the absence of caveolin-1. On the other hand, caveolin-2, which localizes in caveolae, is dependent on caveolin-1 expression in order to be localized at the plasma membrane. Although reggie-1 and reggie-2 strongly interact with each other, we did not detect a direct interaction between caveolin-1 and reggies by means of a yeast two-hybrid assay, nor could reggies be co-immunoprecipitated with caveolin-1. Furthermore, endogenous reggie-1 and -2 were found not to colocalize with caveolin-1 in epithelial cells. Thus, our data indicate that reggies are localized in microdomains different from caveolae, and the function of reggies is different from and independent of caveolin-1.  相似文献   

5.
The reggie/flotillin proteins oligomerize and associate into clusters which form scaffolds for membrane microdomains. Besides their localization at the plasma membrane, the reggies/flotillins reside at various intracellular compartments; however, the trafficking pathways used by reggie-1/flotillin-2 remain unclear. Here, we show that trafficking of reggie-1/flotillin-2 is BFA sensitive and that deletion mutants of reggie-1/flotillin-2 accumulate in the Golgi complex in HeLa, Jurkat and PC12 cells, suggesting Golgi-dependent trafficking of reggie-1/flotillin-2. Using total internal reflection fluorescence microscopy, we observed fast cycling of reggie-1/flotillin-2-positive vesicles at the plasma membrane, which engaged in transient interactions with the plasma membrane only. Reggie-1/flotillin-2 cycling was independent of clathrin, but was inhibited by cholesterol depletion and microtubule disruption. Cycling of reggie-1/flotillin-2 was negatively correlated with cell-cell contact formation but was stimulated by serum, epidermal growth factor and by cholesterol loading mediated by low density lipoproteins. However, reggie-1/flotillin-2 was neither involved in endocytosis of the epidermal growth factor itself nor in endocytosis of GPI-GFPs or the GPI-anchored cellular prion protein (PrP(c)). Reggie-2/flotillin-1 and stomatin-1 also exhibited cycling at the plasma membrane similar to reggie-1/flotillin-2, but these vesicles and microdomains only partially co-localized with reggie-2/flotillin-1. Thus, regulated vesicular cycling might be a general feature of SPFH protein-dependent trafficking.  相似文献   

6.
Inactivation of glycogen synthase kinase 3 (GSK3) has been shown to mediate axon growth during development and regeneration. Phosphorylation of GSK3 by the kinase Akt is well known to be the major mechanism by which GSK3 is inactivated. However, whether such regulatory mechanism of GSK3 inactivation is used in neurons to control axon growth has not been directly studied. Here by using GSK3 mutant mice, in which GSK3 is insensitive to Akt-mediated inactivation, we show that sensory axons regenerate normally in vitro and in vivo after peripheral axotomy. We also find that GSK3 in sensory neurons of the mutant mice is still inactivated in response to peripheral axotomy and such inactivation is required for sensory axon regeneration. Lastly, we provide evidence that GSK3 activity is negatively regulated by PI3K signaling in the mutant mice upon peripheral axotomy, and the PI3K–GSK3 pathway is functionally required for sensory axon regeneration. Together, these results indicate that in response to peripheral nerve injury GSK3 inactivation, regulated by an alternative mechanism independent of Akt-mediated phosphorylation, controls sensory axon regeneration.  相似文献   

7.
In the zebrafish retinotectal system, retinal ganglion cells (RGCs) project topographically along anterior-posterior (A-P) and dorsal-ventral (D-V) axes to innervate their primary target, the optic tectum. In the nevermind (nev) mutant, D-V positional information is not maintained by dorsonasal retinal axons as they project through the optic tract to the tectum. Here we present a detailed phenotypic analysis of the retinotectal projection in nev and show that dorsonasal axons do eventually find their correct location on the tectum, albeit after taking a circuitous path. Interestingly, nev seems to be specifically required for retinal axons but not for several non-retinal axon tracts. In addition, we find that nev is required both cell autonomously and cell nonautonomously for proper lamination of the retina. We show that nev encodes Cyfip2 (Cytoplasmic FMRP interacting protein 2) and is thus the first known mutation in a vertebrate Cyfip family member. Finally, we show that CYFIP2 acts cell autonomously in the D-V sorting of dorsonasal RGC axons in the optic tract. CYFIP2 is a highly conserved protein that lacks known domains or structural motifs but has been shown to interact with Rac and the fragile-X mental retardation protein, suggesting intriguing links to cytoskeletal dynamics and RNA regulation.  相似文献   

8.
To understand the relationship between epidermal growth factor receptor (EGFR) and axon regeneration and the mechanisms of how EGFR regulates the neuronal intrinsic regenerative ability, we evaluated the levels of mRNA and protein of EGFR、total mammalian target of rapamycin (mTOR), p‐mTORSer2448, total Akt and p‐AktSer473 in rats of different developmental stage by using Western blot and real‐time polymerase chain reaction analysis. Axon protein tau and neuron proteins β‐tubulin/neurofilament (NF) were assessed to evaluate the extent of the axon regeneration in cultured neuron cells. Expressions of EGFR、total mTOR, p‐mTORSer2448, total Akt and p‐AktSer473 in cultured neuron cells were also detected using Western blot analysis. Our results showed that the expressions of EGFR and mTOR dropped off with the ageing of the rats, and Ser473 phosphorylation of Akt and Ser2448 phosphorylation of mTOR were highly expressed in foetal and newborn rats but decreased obviously in adult rats. tau, β‐tubulin and NF were upregulated when EGFR was overexpressed and down‐regulated after EGFR was blocked. The phosphorylation of mTOR and Akt was apparently elevated when EGFR was overexpressed and decreased when EGFR was blocked, which suggested that EGFR has the potential to regulate the neuronal intrinsic regeneration and mTOR and PI3K/Akt pathway activation may have an important role in it. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Mutant analysis in the zebrafish is revealing the genes that are expressed in the early neuroepithelium and that regulate factors responsible for the guidance of commissural axons. We review work on the developing zebrafish brain illustrating the way in which territories of regulatory gene expression influence the formation and positioning of axon pathways. Received: 20 May 1997 / Accepted: 9 June 1997  相似文献   

10.
The cellular prion protein, PrPc, is a glycosylphosphatidylinositol-anchored cell surface glycoprotein and a protease-resistant conformer of the protein may be the infectious agent in transmissible spongiform encephalopathies. PrPc is localized on growing axons in vitro and along fibre bundles that contain elongating axons in developing and adult brain. To determine whether the growth state of axons influenced the expression and axonal transport of PrPc, we examined changes in the protein following post-traumatic regeneration in the hamster sciatic nerve. Our results show (1) that PrPc in nerve is significantly increased during nerve regeneration; (2) that this increase involves an increase in axonally transported PrPc; and (3) that the PrPc preferentially targeted for the newly formed portions of the regenerating axons consists of higher molecular weight glycoforms. These results raise the possibility that PrPc may play a role in the growth of axons in vivo, perhaps as an adhesion molecule interacting with the extracellular environment through specialized glycosylation.  相似文献   

11.
The heterotrimeric G protein alpha q subunit (Galphaq) mediates a variety of cell functions by activating the effector molecule phospholipase Cbeta. Galphaq activity is regulated by G protein betagamma subunits, G protein-coupled receptors, RGS proteins, and Ric-8. In this study, we identified the lipid raft resident proteins, flotillin-1/reggie-2 and flotillin-2/reggie-1, as Galphaq-binding proteins. The interactions of Galphaq and flotillins were independent of the nucleotide-binding state of Galphaq, and the N-terminal portion of flotillins was critical for the interaction. A short interfering RNA-mediated knockdown of flotillins, particularly flotillin-2, attenuated the UTP-induced activation of p38 mitogen-activated protein kinase (MAPK) but not that of ERK1/2. The activation of p38 MAPK was inhibited by the Src family tyrosine kinase inhibitor PP2 and the cholesterol-depleting agent methyl-beta-cyclodextrin, which is generally used for the disruption of lipid rafts. In contrast, the activation of ERK1/2 was not inhibited by these compounds. These lines of evidence suggested that a Gq-coupled receptor activates specifically p38 MAPK through lipid rafts and Src kinase activation, in which flotillins positively modulate the Gq signaling.  相似文献   

12.
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771–792, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
14.
Retinal ganglion cells (RGCs) in rats were retrogradely labeled with the fluorescent tracer Fluorogold (FG) and subjected to GAP-43 and c-JUN immunocytochemistry to identify those RGSs that are capable of regenerating an axon. After optic nerve section (ONS) and simultaneous application of FG to the nerve stump (group 1 experiments), GAP-43 immunoreactive RGCs (between 2 and 21 days after ONS) always represented a subfraction of both FG-labeled (i.e., surviving) RGCs and RGCs exhibiting c-JUN. GAP-43 immunoreactive RGCs represented 22% of RGCs normally present in rat retinae and 25% of surviving RGCs at 5 days after ONS but were reduced to 2% and 1%, which is 6% and 5% of survivors at 14 and 21 days, respectively. In animals that received a peripheral nerve (PN) graft after ONS (group 2 experiments), RGCs with regenerating axons were identified by FG application to the graft at 14 and 21 days. When examined at 21 and 28 days, all FG-labeled RGCs exhibited GAP-43 immunoreactivity, and FG/GAP-43-labeled RGCs were 3% and 2% of those resent in normal rat retinae. In relation to surviving. RGCs GAP-43 immunoreactive RGCs represented 10% at both time points. FG-/GAP-43 labeled RGCs also exhibited c-JUN, but c-JUN immunoreactive RGCs were at both time points at least twice as numerous a FG-/GAP-43-labeled RGCs. These data suggest that regenerating axons in PN grafts derive specifically from GAP-43 reexpressing RGCs. Appearance of GAP-43 immunoreactivity may therefore identify those RGCs that are capable of axonal regeneration or sprouting. 1994 John Wiley & Sons, Inc.  相似文献   

15.
谢琳  房萍  林金飞  潘洪超  张帆  申延琴 《遗传》2013,35(4):495-501
成年斑马鱼(Danio rerio)具有很强的脊髓损伤后自主修复的能力, 但目前其机制不明。为了研究斑马鱼中脑组织对脊髓再生的影响, 文章应用成年斑马鱼脊髓损伤模型, 采用实时定量PCR方法和原位杂交技术, 检测了斑马鱼脑中胶质细胞源性神经营养因子(gdnf)和一氧化氮合酶(nos)基因在脊髓损伤后4 h、12 h、6 d、11 d的表达情况, 展示了这两种基因在斑马鱼脑内不同核团的动态表达变化。结果显示, 成年斑马鱼脊髓损伤后, 神经营养因子gdnf基因在损伤急性期(4 h、12 h)和神经修复期(6 d、11 d)于斑马鱼脑内呈现显著性升高(P<0.05),而一氧化氮合酶基因nos的表达于损伤急性期显著性升高 (P<0.05), 随后下降, 并在修复期 (11 d)显著降低(P<0.05)。这表明, 脊髓损伤后, 高表达gdnf基因同时低表达nos基因的脑环境给脊髓损伤提供了良好的神经再生微环境, 从而可能促进轴突的再生长及运动能力的恢复。  相似文献   

16.
Myosin light-chain kinase (MLCK) regulates actin-myosin II interactions in nonskeletal muscle cells, and the use of specific pharmacological inhibitors has implicated MLCK in retinal growth cone motility and neurite outgrowth. To further establish the existence and functions of MLCK in neurons, we isolated cDNAs encoding two forms of goldfish MLCK that were differentially expressed in the brain and gut and we sequenced the form most abundantly expressed in the brain (GFMLCK1). In situ hybridization with a cRNA probe specific to GFMLCK1 revealed widespread expression in CNS neurons, including tectal periventricular neurons and cerebellar and medullary neurons. After optic nerve crush, expression was markedly increased in the retinal ganglion cells. Expression peaked during the phase of axonal outgrowth, which, when taken together with our previous pharmacological studies, further supports a role for MLCK in growth cone motility. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
In the developing embryo,nascent axons navigate towards their specific targets to establish the intricate network of axonal connections linking neurons within the mature nervous system.Molecular navigational systems comprising repulsive and attractive guidance cues form chemotactic gradients along the pathway of the exploring growth cone.Axon-bound receptors detect these gradients and determine the trajectory of the migrating growth cone.In contrast to their benevolent role in the developing nervous system,repulsive guidance receptors are detrimental to the axon’s ability to regenerate after injury in the adult.In this review we explore the essential and beneficial role played by the chemorepulsive Wnt receptor,Ryk/Derailed in axon navigation in the embryonic nervous system(the Yin function).Specifically,we focus on the role of Wnt5a/Rykmediated guidance in the establishment of two major axon tracts in the mammalian central nervous system,the corticospinal tract and the corpus callosum.Recent studies have also identified Ryk as a major suppressor of axonal regeneration after spinal cord injury.Thus,we also discuss this opposing aspect of Ryk function in axonal regeneration where its activity is a major impediment to axon regrowth(the Yang function).  相似文献   

18.
中枢神经系统轴突再生抑制蛋白   总被引:1,自引:0,他引:1  
Hu JG  Lu PH  Xu XM 《生理科学进展》2004,35(4):311-315
中枢神经系统 (CNS)轴突再生的主要障碍之一是存在抑制再生的蛋白 ,迄今 ,已在少突胶质细胞 /髓鞘中相继发现至少三个重要的轴突再生抑制蛋白 ,即髓鞘相关糖蛋白 (MAG)、Nogo A和少突胶质细胞 /髓鞘糖蛋白 (OMgp)。最近的研究又证实 ,这三个不同的抑制成分可能主要通过与一个共同的受体Nogo6 6受体 (NgR)结合而发挥作用。这些研究成果扩充了对CNS损伤后轴突再生障碍的理解 ,也为探讨CNS损伤的治疗新策略提供了新的思路。  相似文献   

19.
Constant intense light causes apoptosis of rod and cone photoreceptors in adult albino zebrafish. The photoreceptors subsequently regenerate from proliferating inner nuclear layer (INL) progenitor cells that migrate to the outer nuclear layer (ONL) and differentiate into rods and cones. To identify gene expression changes during this photoreceptor regeneration response, a microarray analysis was performed at five time points during the light treatment. The time course included an early time point during photoreceptor death (16 h), later time points during progenitor cell proliferation and migration (31, 51, and 68 h) and a 96 h time point, which likely corresponds to the initial photoreceptor differentiation. Mean expression values for each gene were calculated at each time point relative to the control (0 h light exposure) and statistical analysis by one-way ANOVA identified 4567 genes exhibiting significant changes in gene expression along the time course. The genes within this data set were clustered based on their temporal expression patterns and proposed functions. Quantitative real-time PCR validated the microarray expression profiles for selected genes, including stat3 whose expression increased markedly during the light exposure. Based on immunoblots, both total and activated Stat3 protein expression also increased during the light treatment. Immunolocalization of Stat3 on retinal tissue sections demonstrated increased expression in photoreceptors and Müller glia by 16 h of light exposure. Some of the Stat3-positive Müller cells expressed PCNA at 31 h, suggesting that Stat3 may play a role in signaling a subset of Müller cells to proliferate during the regeneration response.  相似文献   

20.
BackgroundThe in-vitro study indicated that ERK/MAPK and PI3K/AKT signal channels may play an important role in reparative regeneration process after peripheral nerve injury. But, relevant in-vivo study was infrequent. In particular, there has been no report on simultaneous activation of ERK/MAPK and PI3K/AKT signal channels in facial nerve cell and axon after facial nerve injury.ResultsThe expression of P-ERK enhanced in nerve cells at the injury side on the 1 d after the rat facial nerve was cut and kept on a higher level until 14 d, but decreased on 28 d. The expression of P-AKT enhanced in nerve cells at the injury side on 1 d after injury, and kept on a higher level until 28 d. The expression of P-ERK enhanced at the near and far sections of the injured axon on 1 d, then increased gradually and reached the maximum on 7 d, but decreased on 14 d, until down to the level before the injury on 28 d. The expression of P-AKT obviously enhanced in the injured axon on 1 d, especially in the axon of the rear section, but decreased in the axon of the rear section on 7 d, while the expression of axon in the far section increased to the maximum and kept on till 14 d. On 28 d, the expression of P-AKT decreased in both rear and far sections of the axon.ConclusionThe facial nerve simultaneously activated ERK/MAPK and PI3K/AKT signal channels in facial nerve cells and axons after the cut injury, but the expression levels of P-ERK and P-AKT varied as the function of the time. In particular, they were quite different in axon of the far section. It has been speculated that two signal channels might have different functions after nerve injury. However, their specific regulating effects should still be testified by further studies in regenerative process of peripheral nerve injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号