首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C. Wiencke 《Polar Biology》1990,10(8):589-600
Summary The seasonal development of the endemic Antarctic Desmarestiales Himantothallus grandifolius, Phaeurus antarcticus, Desmarestia anceps, of a ligulate Desmarestia sp., of the Antarctic cold-temperate Adenocystis utricularis (Dictyosiphonales) and of the endemic Antarctic Ascoseira mirabilis (Ascoseirales) was monitored in a 2-year culture study under fluctuating daylengths mimicking the daylength conditions on King George Island (Antarctica). Temperature was kept constant at 0° C and nutrient levels were maintained at 0.6 moles m–3 nitrate and 0.025 moles m –3 phosphate. Sporophytes were initiated between (April-) June and July in all Desmarestiales. This event was controlled either by induction of gametophyte fertility (in H. grandifolius and D. anceps) or by induction of spore formation (in Desmarestia sp. and P. antarcticus). Young sporophytes of all species showed a growth optimum from September to December (-February). Desmarestia sp. and P. antarcticus produced spores and degenerated subsequently after one year of culture at 3 mol photons m–2 s–1 or after 22 months of culture at 2 mol m–2 s–1. In D. anceps spores were released without degeneration of the mother plants after 20 and 19 months of culture at 3 and 10 olm–2 s–1, respectively. In H. grandifolius spore formation was not observed. Adult one year old plants of the latter two perennial species showed growth optima between September and November. Microthalli of A. utricularis were the dominant life phase of this alga in winter. Macrothalli started to develop from June onwards at 3 mol m–2 s–1 or from August to September at 2 mol m–2 s–1. Growth rates of macrothalli cultivated at 9 mol m–2 s–1 showed a growth optimum from September to November. The macrothalli released spores from January to February. Macrothalli cultivated at 3 mol m–2 s–1 maximally grew in January. They became fertile after almost 2 years of culture at 3 mol m–2 s–1 and remained vegetative at 2 mol m–2 s–1. A. mirabilis exhibited a prominent growth optimum from August to October, at photon fluence rates between 2 and 47 mol m–2 s–1. A second optimum was evident from January to March in plants cultivated at 9 mol m–2 s–1. The results closely correspond to available field data and indicate that the phenology of the studied species can be controlled in the laboratory solely by simulating Antarctic daylengths conditions. The light requirements for growth were very low in microthalli and in juvenile macrothalli and growth was mostly light saturated at 4–12 mol m–2 s–1. Few-celled sporophytes of H. grandifolius and D. anceps tolerated at least 8 and 11 months of darkness. The minimum light demands for completion of the life cycle are 31.4 mol m–2 year–1 in Desmarestia sp., P. antarcticus and probably also in the 2 perennial Desmarestiales; 47.1 mol m–2 year–1 are needed in A. utricularis and probably also in A. mirabilis. These values predict a lower distribution limit of the investigated species at 53±23 m or 48±21 m in clear offshore waters and at 28±5 m or 26±5 m, respectively, in inshore fjords of the Antarctic Peninsula region.Contribution No. 281 of the Alfred-Wegener-Institut für Polar-u. Meeresforschung  相似文献   

2.

Aims

To investigate root competition in a legume/non-legume mixture, and how root growth of the legume is affected by the competition at increasing nitrogen (N) supply.

Methods

Red beet (Beta vulgaris L.) and red clover (Trifolium pratense L.) were grown in transparent rhizotron tubes either in mixture or as sole crop at N supplies of 0, 75 or 150 kg ha-1. The root growth was evaluated by the root intensity on the rhizotron surface, root depth and plant uptake of 15N injected into the soil at the deeper part of the red clover root system.

Results

Competition with red beet decreased clover root intensity in deeper soil layers compared to clover grown as sole crop. The difference between clover in sole crop and in mixture was not evident at the highest N supply because the root growth of clover in sole crop appeared to be lowered at high N level. Increased N supply increased the dominance of red beet, but generally did not alter the root growth and distribution of the two species grown in mixture.

Conclusions

Clover root growth and rooting depth were inhibited by competition with red beet but the effect was not enhanced by increased N supply; hence the increased dominance of red beet at higher N level was likely due to its increased growth and competitiveness for other soil resources.  相似文献   

3.
Rapid destruction of forest habitats has led to the establishment of protected areas in formerly managed forests with the aim of restoring biodiversity. Conservation in spruce-dominated reserves is often contradicted by salvage logging after insect outbreaks. Here we study the community characteristics of wood decaying fungi in a high montane Norway Spruce forest with three different management types: (1) a formerly managed area disturbed by a large-scale bark beetle outbreak, (2) an area with continuous salvage logging, and (3) an old-growth forest. Bark beetle activity in the disturbed area resulted in downed wood amounts comparable to those of the old-growth forest. However, species accumulation curves for the disturbed forest were more similar to those of the logged forest than to those of the old-growth forest. This arose because of differences in the diversity of wood decay classes; wood decay in the disturbed forest was more homogeneous. Logs in the disturbed forest originated almost exclusively from bark-beetle-infested trees, but the causes of tree mortality in the old-growth forest were manifold. Although most red-listed species were clearly confined to old-growth forest, Antrodiella citrinella was most abundant in the disturbed forest. Our analysis furthermore showed that the between stand scale is the most effective unit for diversity wood-decaying fungi. We therefore suggest a conservation strategy for preserving old-growth forests and establishing protected forest stands to enhance structural heterogeneity in spruce-dominated forests. For this, a careful screening of protected areas throughout Europe is necessary to provide managers with guidelines for conservation.  相似文献   

4.
Hemicelluloses represent a large reservoir of carbohydrates that can be utilized for renewable products. Hydrolysis of hemicellulose into simple sugars is inhibited by its various chemical substituents. The glucuronic acid substituent is removed by the enzyme α-glucuronidase. A gene (deg75-AG) encoding a putative α-glucuronidase enzyme was isolated from a culture of mixed compost microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The DEG75-AG enzyme had optimum activity at 45?°C. Unlike other α-glucuronidases, the DEG75-AG had a more basic pH optimum of 7-8. When birchwood xylan was used as substrate, the addition of DEG75-AG increased hydrolysis twofold relative to xylanase alone.  相似文献   

5.
To reduce culture artifacts by conventional repeated passaging and long-term culture in vitro, the isolation of synovial fibroblasts (SFB) was attempted from rheumatoid arthritis (RA) synovial membranes by trypsin/collagenase digest, short-term in vitro adherence (7 days), and negative isolation using magnetobead-coupled anti-CD14 monoclonal antibodies. This method yielded highly enriched SFB (85% prolyl-4-hydroxylase+/74% Thy-1/CD90+ cells; <2% contaminating macrophages; <1% leukocytes/endothelial cells) that, in comparison with conventional fourth-passage RA-SFB, showed a markedly different phenotype and significantly lower proliferation rates upon stimulation with platelet-derived growth factor and IL-1β. This isolation method is simple and reliable, and may yield cells with features closer to the in vivo configuration of RA-SFB by avoiding extended in vitro culture.  相似文献   

6.
Stem cells isolated from dental pulp possess the capacity for self-renewal and the potential for multi-lineage differentiation. However, dental pulp stem cells have different characteristics in terms of their culture conditions. The success of stem cells culture is governed by its micro-environmental niche. Therefore, we studied the effects of culture niche on long-term expansion of dental pulp stem cells in terms of cell morphology, growth kinetics, senescence pattern, cell surface marker expression differentiation capacity, and seeding plating density of dental pulp stem cells in four different, widely used media composition Among the various basal media tested, α-minimum essential media and knock out-minimum essential media supplemented with 10% fetal bovine serum were found to be the most optimal media composition in preserving the phenotypic characteristics and differentiation potential for prolonged periods as compared with DMEM-F12 and DMEM-LG. Plating density has been shown to affect overall yield. As a conclusion, the adoption of an appropriate culture system significantly improved cell yield, thus enabling the attainment of sufficient yields for therapeutic applications economizing in terms of cost of production and minimizing seeding cell density for maximum yield.  相似文献   

7.
Leaf and stem segments of Gomphrena officinalis originated from aseptically grown seedlings were used to initiate cultures. Callus production was obtained on gelled Murashige & Skoog medium supplemented with 6-benzylaminopurine alone (1.0, 5.0 or 10.0 mgl-1) or combined with -naphthalene acetic acid (0.1, 0.5 and 1.0 mgl-1) after 10 to 15 days of culture, and can be transferred to fresh medium every 30 days. The combinations of 5.0 or 10.0 mgl-1 of 6-benzylaminopurine with 0.1 mgl-1 of -naphthalene acetic acid were found to be the best for shoot regeneration. Adventitious shoot formation occurred after 50 to 60 days of culture in leaf and internode stem explants. Nodal segments developed actively growing lateral buds after 30 days of culture. Gelled Murashige & Skoog medium containing 10 mgl-1 of indole-3-butyric acid was considered optimal for the rooting of shoots. Rooted plants transferred to potting soil could be successfully established.Abbreviations BA 6-benzylaminopurine - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige & Skoog - NAA -naphthalene acetic acid  相似文献   

8.
The study deals with metal (Cu, Mn, Pb, Cd) concentrations in sediment, water, and corresponding leaf samples of Eichhornia crassipes obtained from ponds in nonmining (P1) and mining (P2, P3, P4) regions. In spite of significant high metal concentrations in sediments from mining regions rather than from nonmining regions, the unelevated SQG-I (sediment quality guideline index) values proved low levels of toxicity. Irrespective of the wide range of metal concentration in sediments, the levels in water had been nearly consistent in all the ponds. Concentration of metals in leaves decreased with an increase in concentration in the substrate. Mn, Cu, and Cd accumulated within the range of MAC (maximum allowable concentration) for plants, whereas Pb accumulated above the limit. BAFsl (bioaccumulation factor with respect to sediment) values for Mn (0.20–0.27) were highest, followed by Cu (0.13–0.20) and Pb (0.03–0.20), whereas BAFwl (bioaccumulation factor with respect to water) was highest for Cu (428–3205), followed by Mn (285–1100), Pb (242–506), and Cd (7–130). This study concludes that E. crassipes plays a very important role in removing the metals from the pond ecosystem, whereas leaves of this plant can be used effectively for biomonitoring surveys. E. crassipes can be used for phytoremediation of polluted wetlands through proper management strategies.  相似文献   

9.
During 1990, whole-year investigations on the cycle of maturity and early life history of Notothenia coriiceps were carried out. All collected material (ichthyoplankton samples and adult fish) originated from Admiralty Bay, King George Island, South Shetlands. Development of the gonads of N. coriiceps starts in February. Spawning takes place in May and June, and the gonads rest about half a year. Using whole-year ichthyoplankton sampling eggs were observed from the stage of several blastomeres (May, June) to hatching (December). During the whole of embryogenesis the eggs remained pelagic. A preference for occurrence in the upper layers of investigated waters was noticed. Accepted: 22 March 1999  相似文献   

10.
Oli MK  Armitage KB 《Oecologia》2003,136(4):543-550
Theoretical and empirical studies suggest that the age of first reproduction (the age at which reproduction begins) can have a substantial influence on population dynamics and individual fitness. Using complete survival and reproductive histories of 428 female yellow-bellied marmots (Marmota flaviventris) from a 40-year study (1962-2001), we investigated causes and fitness consequences of delayed maturity. Most females (86%) died without reproducing. The age of first reproduction of females that survived to reproduce at least once (n=60) ranged from 2 to 6 years. Females maturing later did not have a larger lifetime number of successful reproductive events or offspring production, nor did they experience improved survival. Females reproducing earlier had a higher fitness than those that delayed maturity. These results suggest that the net cost of early maturity was less than fitness benefits associated with early onset of reproduction, and that age of first reproduction in our study population is under substantial directional selection favoring early maturity. We conclude that female yellow-bellied marmots delay onset of reproduction not because of fitness benefits of foregoing reproduction at an earlier age, but due to the social suppression of reproduction by older, reproductive females, which enhances their own fitness to the detriment of the fitness of young females. Our results indicate that female yellow-bellied marmots that survive to reproduce may act to increase their own direct fitness, and that social suppression of reproduction of young females is a part of that strategy.  相似文献   

11.
12.
Purpose

The main goal of this work is to evaluate the environmental impact of a 63-m blade for wind generators. The embodied energy and the carbon footprint are used as supporting tools for material selection in the initial project stages.

Methods

Real industrial data regarding the most used materials for wind turbine blade construction are used. Two eco-parameters, embodied energy and carbon footprint, were calculated from each selected material together with values of manufacture, transport, use, and final disposal. The blades must be built to have a mechanical strength high enough to withstand vibrations caused by manufacturing flaws, turbulence, or irregular loading. In this sense, Young’s modulus, yield strength, and density were compared to the environmental footprint data to support the final material choice. This evaluation process of the possible materials to be used in the blade manufacture was carried out in the initial stages of the project.

Results

Composite materials such as glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP), bonded together with an adhesive material, are used to build modern wind turbine blades. Those composites comprise a considerable number of different materials that can be mixed to reach adequate performance. Comparisons were made with 46 pre-selected materials, considering the mechanical behavior and environmental impacts. The final selected materials have better properties than the reference material. Finally, two materials with the desired mechanical properties and with a potential lower negative environmental impact than the reference material were selected.

Conclusions

Replacing the reference resin—epoxy/E-glass fiber—with the epoxy resin with the lowest environmental impact—epoxy/S-glass fiber—will reduce the total value of the environmental load to 102 GJ of energy and 3.4 t of CO2. As important as the material selection in the early stages of product development is the end of life (EoL) choice. In this case, the glass fiber has an EoL potential of 370 GJ of energy and 460 t of CO2 in the remanufacturing option, against zero for the landfill. This work shows that carefully selected raw materials and EoL alternatives for WTB can significantly reduce the environmental impact of this component.

  相似文献   

13.
We have cloned, purified and characterized the γ-carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Antarctic bacterium Colwellia psychrerythraea, which is an obligate psychrophile. The enzyme shows a significant catalytic activity for the physiologic reaction of CO2 hydration to bicarbonate and protons, with the following kinetic parameters: kcat of 6.0 × 105 s−1 and a kcat/Km of 4.7 × 106 M−1 × s−1. This activity was inhibited by the sulfonamide CA inhibitor (CAI) acetazolamide, with a KI of 502 nM. A range of anions was also investigated for their inhibitory action against the new enzyme CpsCA. Perchlorate, tetrafluoroborate, fluoride and bromide were not inhibitory, whereas cyanate, thiocyanate, cyanide, hydrogensulfide, carbonate and bicarbonate showed KIs in the range of 1.4–4.4 mM. Diethyldithiocarbamate was a better inhibitor (KI of 0.58 mM) whereas sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid were the most effective inhibitors detected, with KIs ranging between 8 and 38 μM. The present study may shed some more light regarding the role that γ-CAs play in the life cycle of psychrophilic bacteria as the Antarctic one investigated here.  相似文献   

14.
15.
Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.  相似文献   

16.
Knowledge on the distribution, abundance and species richness of intertidal macroalgae occurring on sandy and muddy flats of the German Wadden Sea is still incomplete. We summarize published and unpublished information available on the presence of macroalgae on the tidal flats of Königshafen Bay (island of Sylt, North Sea), one of the more extensively studied areas of the Wadden Sea. A total of 46 green algal species, 36 brown algal species and 26 red algal species has been recorded within the last 120 years on soft and hard substrata of Königshafen Bay (disregarding species found unattached or drifting). Several of these species were only temporarily resident on the tidal flats. Today, at least 35 green, 15 brown and 12 red algal species occur within or close to Königshafen Bay. Significant long-term changes in species abundances have occurred in all three major groups of algae: Since the late 1970s, dense green algal mats dominated byEnteromorpha flexuosa, E. radiata andE. prolifera have occurred regularly on the intertidal flats, whereas a general decrease of brown and red algae has been documented. Two red algal species,Gracilaria verrucosa and its epiphyteCallithamnion corymbosum, were conspicuous members of the macroflora until the middle of this century. Although still present in the 1980s, they have now disappeared completely. On the other hand, the brown algaSargassum muticum has begun to colonize mussel beds. The causal background of long-term changes in the macroalgal flora of Königshafen Bay is discussed. Owing to substantial nomenclatural changes during the last 120 years, a revised species list with authors’ names and synonyms is included.  相似文献   

17.
Wastewater is a big source of water pollution in the world. Selected wastewater samples from Dera Ismail Khan (D.I. Khan), a city in Pakistan, were analyzed for physicochemical and ecotoxicological properties. Samples from the Indus River before and after the municipal wastewater is discharged into it were tested to determine the effects of municipal wastewaters from D.I. Khan on the river Indus. Different parameters of the freshwater flagellate Euglena gracilis such as motility, swimming velocity, gravitactic orientation, cell shape, and photosynthetic efficiency were used as end points. Gravitactic orientation and cell shape were found to be significantly impaired by the wastewater samples. Swimming velocity and relative electron transport rate of cells were positively affected by all water samples. Quantum yield of photosystem II (F v/F m) was not affected, except by ghee (oil) industry effluent where it was significantly increased. Comparison of upstream and downstream samples from the Indus River showed that waste effluents from D.I. Khan affect the physicochemical and ecological properties of the river Indus.  相似文献   

18.
Tocopherols, collectively known as vitamin E, are lipophilic antioxidants, which are synthesized only by photosynthetic organisms. Due to their enormous potential to protect cells from oxidative damage, tocopherols are used, e.g., as nutraceuticals and additives in pharmaceuticals. The most biologically active form of vitamin E is α-tocopherol. Most tocopherols are currently produced via chemical synthesis. Nevertheless, this always results in a racemic mixture of different and less effective stereoisomers because the natural isomer has the highest biological activity. Therefore, tocopherols synthesized in natural sources are preferred for medical purposes. The annual sunflower (Helianthus annuus L.) is a well-known source for α-tocopherol. Within the presented work, sunflower callus and suspension cultures were established growing under photomixotrophic conditions to enhance α-tocopherol yield. The most efficient callus induction was achieved with sunflower stems cultivated on solid Murashige and Skoog medium supplemented with 30 g l?1 sucrose, 0.5 mg l?1 of the auxin 1-naphthalene acetic acid, and 0.5 mg l?1 of the cytokinin 6-benzylaminopurine. Photomixotrophic sunflower suspension cultures were induced by transferring previously established callus into liquid medium. The effects of light intensity, sugar concentration, and culture age on growth rate and α-tocopherol synthesis rate were characterized. A considerable increase (max. 230 %) of α-tocopherol production in the cells was obtained within the photomixotrophic cell culture compared to a heterotrophic cell culture. These results will be useful for improving α-tocopherol yields of plant in vitro cultures.  相似文献   

19.
20.
《BBA》1986,851(3):407-415
Two-step excitation of retinal in bacteriorhodopsin by visible light is followed by an energy transfer to amino acids that is seen as fluorescent emission around 350 nm. The fluorescence spectrum obtained after two-step excitation (2 × 527 nm) differs from the fluorescence spectrum obtained after one-step ultraviolet excitation (263.5 nm) by a strongly quenched emission with a fluorescence lifetime of 10 ± 5 ps and a smaller spectral width. The two-step absorption process presumably selects tryptophan residues which strongly couple to the retinal chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号