共查询到20条相似文献,搜索用时 0 毫秒
1.
Feng-Wei Xu Jian-Jun Li Ji-Shuai Su Xiao-Ming Lu Yang Wang Li-Ji Wu Chao-Nan Wang Di-Ma Chen Yong-Fei Bai 《Journal of Plant Ecology》2021,14(6):1143
季节性调控资源添加对半干旱草原物种多样性与生态系统功能的影响在资源富集的条件下,物种丰富度、群落地上生产力以及群落稳定性的季节变化通常被忽视。本研究致力于探究在干旱区草原,资源添加如何在生长季的不同月份影响物种丰富度、群落地上生产力及其稳定性。我们在内蒙古草原设置了为期3年的资源添加(氮添加-N、水添加-W以及水、氮共同添加-NW)实验,利用季节性取样的方法,去检验资源添加(水、 氮)对物种丰富度、群落地上生产力及其稳定性的影响,并通过构建结构方程模型分析资源添加调控不同月份与整个生长季群落稳定性的内在机制及其相对重要性。研究结果表明,资源添加在整体上未改变5与6月的群落地上生产力,而氮与水氮共同添加显著提高了7与8月的群落地上生产力。资源添加在整体上未改变物种丰富度、物种异步性与群落稳定性。氮添加与水氮共同添加提高了7与8月的群落地上生产力,主要源于其增加了多年生丛生禾草的地上生产力。结构方程模型分析表明:在生长季前期与整个生长季,物种异步性是决定群落稳定性的主要机制;在生长季后期,多年生丛生禾草的稳定性是驱动群落稳定性的主要因子。我们的研究证明:在半干旱草原,季节与资源的有效性可以交互影响群落地上生产力及其稳定性。这些发现对于半干旱草原的季节性可持续管理具有重要意义,以期减轻土地利用与全球变化带来的影响。 相似文献
2.
高寒草甸不同草地群落物种多样性与生产力关系研究 总被引:30,自引:3,他引:30
生态系统的结构和功能、生物多样性与生产力的关系问题是近年来群落生态学中研究的中心问题,其中,生态系统生产力水平是其功能的重要表现形式,用4种不同草地类型探讨自然群落的物种多样性与生产力关系.结果表明,矮嵩草草甸、小嵩草草甸和金露梅灌丛群落中物种多样性与生产力的关系呈线性增加关系,藏嵩草沼泽化草甸群落中线性增加关系不显著,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响.不同的环境资源和环境异质性是形成群落结构特征、物种多样性分布格局差异的主要原因之一. 相似文献
3.
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates. 相似文献
4.
Understanding the influence of environmental variation on the relationship between biodiversity and ecosystem functioning is of theoretical and practical interest. We predicted that the strength of this relationship should increase with available biotope space (the physical space associated with a species’ niche) due to increased niche complementarity between species. In this study, biotope space specifically refers to soil volume which is associated with the niche dimension of nutrient acquisition. We tested our prediction by growing plant communities on a gradient of increasing soil depth and volume, offering increased rooting space to species. Our results provide support for a linear increase of the magnitude of positive biodiversity effects on above‐ and belowground community biomass with increasing biotope space. This increase was caused by complementarity effects between species. Soil erosion may thus reduce intercropping benefits. 相似文献
5.
Question
Temperate grasslands are known for their high plant diversity and distinct seasonality. However, their intra-annual community dynamics are still largely overlooked by ecologists. Therefore, we explored the seasonal alpha- and beta-diversity patterns of vascular plants and their relationships to above-ground biomass in a rocky steppe (Festucion valesiacae).Location
Pavlov Hills, SE Czech Republic.Methods
For one year, we monitored the plant community of the rocky steppe at monthly intervals in 42 permanent plots of 0.25 m2. We examined seasonal changes in above-ground biomass (estimated from the cover and height of living plant parts) and seasonal beta-diversity, which we partitioned into turnover and nestedness components and their quantitative counterparts: balanced changes and abundance gradients.Results
We identified a pronounced seasonal pattern of above-ground biomass, species richness and composition. Total above-ground biomass was highest in June (summer), with a peak representing only 60% of total annual production (sum of individual species' maxima). However, the observed peak in species richness occurred in March (early spring), with 80% of the total species number recorded throughout the year. Accordingly, nestedness and abundance gradient patterns differed in the spring months, while seasonal turnover and balanced changes in abundance were generally congruent. Annual, short-lived, and perennial species exhibited different seasonal patterns of species richness and biomass production, although a sharp increase in biomass and a peak in species richness in spring were universal across the community.Conclusions
Seasonal climatic constraints on plant growth are key determinants of primary production dynamics. Plants adapt to these constraints by adjusting their life cycles in different ways. In dry grasslands, the complexity of plant responses to climatic seasonality can result in seasonal beta-diversity patterns with divergent peaks in biomass and species richness. 相似文献6.
7.
Productivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers. We analyse global data on terrestrial vertebrate richness, net primary productivity, fire occurrence (fraction of productivity consumed) and additional influences unrelated to productivity (i.e., historical phylogenetic and area effects) on species richness. For birds, fire is associated with higher diversity, rivalling the effects of productivity on richness, and for mammals, fire's positive association with diversity is even stronger than productivity; for amphibians, in contrast, there are few clear associations. Our findings suggest an underappreciated role for fire in the generation of animal species richness and the conservation of global biodiversity. 相似文献
8.
9.
Francesco Boscutti Angelo Vianello Fabio Bozzato Valentino Casolo 《Restoration Ecology》2017,25(4):595-604
An understanding of the processes involved in plant succession is pivotal in achieving an effective site restoration. In a former limestone quarry (northeastern Italy), we explored the effects of a technical reclamation on the plant community using changes in cover of vegetation layers and two sensitive plant traits (i.e. exotic status and life span), with a chronosequence approach. Four reclaimed areas of different ages (from 8 to 35 years old) and natural vegetation in the surroundings were investigated with seven permanent plots each, for a total of 35. Changes in vegetation layers and species richness of both exotic status and life span were analyzed by generalized linear (mixed) models. Relations with plant community assembly were also considered, using a multivariate approach. Both vegetation layers and plant traits were affected by the age of reclaimed areas, evidencing the main changes in plant succession. Annual and exotic species decreased toward the mature stages of reclamation and target vegetation, whereas overall plant diversity (species richness) was stable. Our findings show that both vegetation layer changes and plant traits can be used to assess the degree to which reclamation efforts produce results that approach the restoration of a natural vegetation reference. Implementation of management practices aimed at favoring native perennial species (e.g. appropriate seed mixtures, mowing, tree, and shrub planting) could limit weed‐control efforts, representing a reasonable trade‐off between biodiversity promotion and invasive plant control. 相似文献
10.
B. A. WOODCOCK S. G. POTTS D. B. WESTBURY A. J. RAMSAY M. LAMBERT S. J. HARRIS V. K. BROWN 《Ecological Entomology》2007,32(3):302-311
Abstract. 1. Although the importance of plant community assemblages in structuring invertebrate assemblages is well known, the role that architectural complexity plays is less well understood. In particular, direct empirical data for a range of invertebrate taxa showing how functional groups respond to plant architecture is largely absent from the literature.
2. The significance of sward architectural complexity in determining the species richness of predatory and phytophagous functional groups of spiders, beetles, and true bugs, sampled from 135 field margin plots over 2 years was tested. The present study compares the relative importance of sward architectural complexity to that of plant community assemblage.
3. Sward architectural complexity was found to be a determinant of species richness for all phytophagous and predatory functional groups. When individual species responses were investigated, 62.5% of the spider and beetle species, and 50.0% of the true bugs responded to sward architectural complexity.
4. Interactions between sward architectural complexity and plant community assemblage indicate that the number of invertebrate species supported by the plant community alone could be increased by modification of sward architecture. Management practices could therefore play a key role in diversifying the architectural structure of existing floral assemblages for the benefit of invertebrate assemblages.
5. The contrasting effects of sward architecture on invertebrate functional groups characterised by either direct (phytophagous species) or indirect (predatory species) dependence on plant communities is discussed. It is suggested that for phytophagous taxa, plant community assemblage alone is likely to be insufficient to ensure successful species colonisation or persistence without appropriate development of sward architecture. 相似文献
2. The significance of sward architectural complexity in determining the species richness of predatory and phytophagous functional groups of spiders, beetles, and true bugs, sampled from 135 field margin plots over 2 years was tested. The present study compares the relative importance of sward architectural complexity to that of plant community assemblage.
3. Sward architectural complexity was found to be a determinant of species richness for all phytophagous and predatory functional groups. When individual species responses were investigated, 62.5% of the spider and beetle species, and 50.0% of the true bugs responded to sward architectural complexity.
4. Interactions between sward architectural complexity and plant community assemblage indicate that the number of invertebrate species supported by the plant community alone could be increased by modification of sward architecture. Management practices could therefore play a key role in diversifying the architectural structure of existing floral assemblages for the benefit of invertebrate assemblages.
5. The contrasting effects of sward architecture on invertebrate functional groups characterised by either direct (phytophagous species) or indirect (predatory species) dependence on plant communities is discussed. It is suggested that for phytophagous taxa, plant community assemblage alone is likely to be insufficient to ensure successful species colonisation or persistence without appropriate development of sward architecture. 相似文献
11.
Hongxia Chen Linna Ma Xiaoping Xin Junyao Liu Renzhong Wang 《Ecology and evolution》2018,8(9):4587-4597
Global climate change is predicted to stimulate primary production and consequently increases litter inputs. Changing precipitation regimes together with enhanced litter inputs may affect plant community composition and structure, with consequent influence on diversity and ecosystem functioning. Responses of plant community to increased precipitation and belowground litter addition were examined lasting 5 years in a semiarid temperate grassland of northeastern China. Increased precipitation enhanced community species richness and abundance of annuals by 16.8% and 44%, but litter addition suppressed them by 25% and 54.5% after 5 years, respectively. During the study period, perennial rhizome grasses and forbs had consistent negative relationship under ambient plots, whereas positive relationship between the two functional groups was found under litter addition plots after 5 years. In addition, increased precipitation and litter addition showed significant interaction on community composition, because litter addition significantly increased biomass and abundance of rhizome grasses under increased precipitation plots but had no effect under ambient precipitation levels. Our findings emphasize the importance of water availability in modulating the responses of plants community to potentially enhanced litter inputs in the semiarid temperate grassland. 相似文献
12.
大别山地区植物资源丰富,区系组成复杂且起源古老,为连接华东、华北和华中三大植物区系的纽带,也是我国重要的生物多样性保护和水源涵养生态功能区。采用样方法,在大别山南坡的多枝尖、庵基坪和麒麟沟3个地区,沿着不同海拔高度选取了具有代表性的森林植物群落进行研究,从不同植物群落类型和层次的物种多样性、均匀度和丰富度及其与海拔因子的关系等方面,对大别山南坡的森林植物群落物种多样性进行综合分析。结果表明:1. 共记录有植物108科270属449种,划分为20个森林植物群落类型;2. 森林植物群落各层次物种丰富度表现为草本>乔木>灌木;Shannon-Wiener多样性指数和Simpson多样性指数呈现出乔木>灌木>草本;Pielou均匀度指数变化较为复杂;3. 森林植物群落各层次的物种丰富度随海拔升高而下降;Shannon-Wiener指数和Simpson指数也表现为随着海拔升高而下降,但草本层在1400m之后有上升的趋势。Pielou指数在乔木层中表现为随着海拔的升高而下降,在草本层中表现为先下降后出现上升,在灌木层中则随着海拔的升高而上升,但其波动更为剧烈。本研究对大别山南坡森林植被大范围的采样观测研究,能够全面的展现大别山南坡森林植物的种类分布、空间组成等整体概况及其与海拔因子的关系,能为以后大别山南坡生物多样性的保护提供较为全面真实的数据,从而为大别山地区生物多样性的保护和可持续利用提供理论依据和实践意义。 相似文献
13.
修正了Frontier和Ricotta等关于有效物种丰富度指数A与物种丰富度指数S之间幂律关系的定义.探讨了A与S之间分形关系的生态学意义.认为分形维数D是群落均匀度测度值在物种数S不断增加的过程中.向其逼近的一个理论值;提出了利用双对数坐标上建立的A与S拟合直线的方程.对群落均匀度的4种变化趋势进行描述的方法。以广东黑石顶自然保护区森林演替系列为例.研究了针阔叶混交林和常绿阔叶林样带上.随着样带观察长度的逐渐增加群落均匀度的变化情况。结果表明.230m长的混交林样带只存在一个线性无标度区间.群落均匀度随样带长度的不断增加而逐渐降低.向分形维数D=0.810趋近。170m长的常绿阔叶林样带存在两个线性无标度区问.在0~25m的尺度域内.随着样带长度的逐渐增加均匀度不断降低.向分形维数D=0.525逼近;在30~170m的尺度域内.随着样带观察长度的增加.群落均匀度也逐渐增加.向分形维数D=0.920趋近。 相似文献
14.
生物多样性与生态系统生产力之间的关系是当前生态学领域的热点问题。短花针茅(Stipa breviflora)草原是内蒙古荒漠草原的主要类型, 生态系统脆弱, 气候波动剧烈, 研究内蒙古短花针茅草原生物多样性与生产力的关系具有十分重要的意义。该研究在内蒙古短花针茅草原区设置了202个样地进行群落调查, 在干旱区及半干旱区两种资源供给下, 分析了物种丰富度、功能群丰富度与生产力的关系, 旨在解决两个科学问题: 1)物种多样性和功能群多样性中, 哪一种与生产力关系更为密切?2)资源供给对多样性和生产力关系的影响。结果表明: 1)物种丰富度、群落生产力与年降水量呈正相关关系, 而功能群丰富度与年降水量之间不存在显著相关性; 2)群落生产力随物种丰富度的增加而增加, 且两者间呈正线性关系, 功能群丰富度与生产力之间不存在显著相关关系; 3)资源供给会影响多样性与生产力之间的关系, 资源供给低时, 多样性对生产力贡献较低, 资源供给高时, 多样性对生产力的贡献较高。该研究丰富了多样性与生产力关系的研究, 同时, 考虑到植物功能性状的研究在近几年受到生态学家的重视, 且多数研究集中于小尺度的人工控制实验, 因此, 在大尺度自然生态系统中开展功能性状多样性与生态系统功能关系的研究将十分必要。 相似文献
15.
Shan Xu Nico Eisenhauer Olga Ferlian Jinlong Zhang Guoyi Zhou Xiankai Lu Chengshuai Liu Deqiang Zhang 《Proceedings. Biological sciences / The Royal Society》2020,287(1939)
Plant diversity has a strong impact on a plethora of ecosystem functions and services, especially ecosystem carbon (C) storage. However, the potential context-dependency of biodiversity effects across ecosystem types, environmental conditions and carbon pools remains largely unknown. In this study, we performed a meta-analysis by collecting data from 95 biodiversity-ecosystem functioning (BEF) studies across 60 sites to explore the effects of plant diversity on different C pools, including aboveground and belowground plant biomass, soil microbial biomass C and soil C content across different ecosystem types. The results showed that ecosystem C storage was significantly enhanced by plant diversity, with stronger effects on aboveground biomass than on soil C content. Moreover, the response magnitudes of ecosystem C storage increased with the level of species richness and experimental duration across all ecosystems. The effects of plant diversity were more pronounced in grasslands than in forests. Furthermore, the effects of plant diversity on belowground plant biomass increased with aridity index in grasslands and forests, suggesting that climate change might modulate biodiversity effects, which are stronger under wetter conditions but weaker under more arid conditions. Taken together, these results provide novel insights into the important role of plant diversity in ecosystem C storage across critical C pools, ecosystem types and environmental contexts. 相似文献
16.
The ‘environmental heterogeneity hypothesis’ (EHH) has been proposed as a mechanism that enables species coexistence through resource partitioning. In accordance with this hypothesis, plant diversity is predicted to increase with variability in resources, but there has been weak support for this hypothesis from experimental studies. The objectives of this research were to 1) characterize how resource availability and heterogeneity (coefficient of variation) change as plant communities develop using sequentially restored grasslands, 2) determine if resource heterogeneity relates to plant diversity (effective number of species, richness and evenness) and 3) reveal if the strength of resource heterogeneity–diversity relationships is different among levels of resource availability. We quantified means and coefficients of variation in soil nitrate and light availability in grasslands established on former agricultural lands for different times and their relationship to plant diversity using a geostatistically‐informed design. Nitrate availability decreased exponentially with restoration age, but no directional change in nitrate heterogeneity across the chronosequence occurred due to high resource variability in some restorations. Light availability also decreased exponentially across the chronosequence, but there was no directional change in light heterogeneity. Nitrate heterogeneity was positively correlated with both plant richness and plant effective number of species at high levels of nitrate availability. However, no nitrate heterogeneity correlation was detected at low levels of nitrate availability. Light heterogeneity was positively correlated with plant effective number of species at low levels of light availability. However, no light heterogeneity correlation was detected at high levels of light availability. Plant evenness was not correlated with resource heterogeneity at any resource availability level. These results support the positive heterogeneity–diversity relationship predicted by EHH, and uniquely that this relationship develops within a decade of plant community development, but can be obscured by resource availability. 相似文献
17.
18.
Tzung-Su Ding Hsiao-Wei Yuan Shu Geng Yao-Sung Lin Pei-Fen Lee 《Global Ecology and Biogeography》2005,14(4):299-306
Aim To examine the species richness of breeding birds along a local elevational gradient and to test the following assumptions of the energy limitation hypothesis: (1) the energy flux through birds is positively correlated with above‐ground net primary productivity, (2) bird density is positively correlated with total energy flux, and (3) bird species richness is positively correlated with bird density. Location An elevational gradient from 1400 to 3700 m on Mt. Yushan, the highest mountain in Taiwan (23°28′30″ N, 120°54′00″ E), with a peak of 3952 m a.s.l. Methods We established 50 sampling stations along the elevational gradient. From March to July 1992, we estimated the density of each bird species using the variable circular‐plot method. Above‐ground net primary productivity was modelled using monthly averages from weather data for the years 1961–90. Results Bird species richness had a hump‐shaped relationship with elevation and with net primary productivity. Bird energy flux was positively correlated with net primary productivity and bird species richness was positively correlated with bird density. The relationship between bird density and energy flux was hump‐shaped, which does not support one assumption of the energy limitation hypothesis. Main conclusions The results supported two essential assumptions of the energy limitation hypothesis. However, when energy availability exceeded a certain level, it could decrease species richness by increasing individual energy consumption, which reduced bird density. Thus, energy availability is a primary factor influencing bird species richness at this scale, but other factors, such as body size, could also play important roles. 相似文献
19.
Wenhong Ma 《生物学前沿》2007,2(3):318-323
The relationship between plant species richness and primary productivity has long been acentral topic in biodiversity research.In this paper,we examine the relationship between species richness and productivity in four typical grasslands of Northern China at different spatial scales.At the community scale,a positive correlation was found for six of seven communities.A unimodal pattern was found only for one community (Stipa glareosa community),while at a large scale (vegetation type or landscape/region),the relationship was also found significantly positive.Species richness ranged from 4 to 35 species,and community aboveground productiand aboveground productivity were found in alpine meadow,followed by meadow steppe,typical steppe and desert steppe. 相似文献
20.
Ma Wenhong 《Frontiers of Biology in China》2007,2(3):318-323
The relationship between plant species richness and primary productivity has long been a central topic in biodiversity research.
In this paper, we examine the relationship between species richness and productivity in four typical grasslands of Northern
China at different spatial scales. At the community scale, a positive correlation was found for six of seven communities.
A unimodal pattern was found only for one community (Stipa glareosa community), while at a large scale (vegetation type or landscape/region), the relationship was also found significantly positive.
Species richness ranged from 4 to 35 species, and community aboveground productivity from 13 to 368 g·m−2·a−1. The highest species richness and aboveground productivity were found in alpine meadow, followed by meadow steppe, typical
steppe and desert steppe.
Translated from Biodiversity Science, 2006, 14(1): 21–28 [译自: 生物多样性] 相似文献