共查询到20条相似文献,搜索用时 15 毫秒
1.
J Vásquez-Vivar N Hogg P Martásek H Karoui K A Pritchard B Kalyanaraman 《The Journal of biological chemistry》1999,274(38):26736-26742
The binding of calcium/calmodulin stimulates electron transfer between the reductase and oxygenase domains of neuronal nitric oxide synthase (nNOS). Here, we demonstrate using electron spin resonance spin-trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide that pterin-free nNOS generates superoxide from the reductase and the oxygenase domain by a calcium/calmodulin-dependent mechanism. Tetrahydrobiopterin (BH(4)) diminishes the formation of superoxide by a mechanism that does not cause inhibition of NADPH consumption. In contrast, BH(4) analogs 7,8-dihydrobiopterin and sepiapterin do not affect superoxide yields. L-Arginine alone inhibits the generation of superoxide by nNOS but not by C331A-nNOS mutant that has a low affinity for L-arginine. A greater decrease in superoxide yields is observed when nNOS is preincubated with L-arginine. This effect is in accordance with the slow binding rates of L-arginine to NOS in the absence of BH(4). L-Arginine alone or in combination with BH(4) decreases the rates of NADPH consumption. The effect of L-arginine on superoxide yields, however, was less dramatic than that caused by BH(4) as much higher concentrations of L-arginine are necessary to attain the same inhibition. In combination, L-arginine and BH(4) inhibit the formation of superoxide generation and stimulate the formation of L-citrulline. We conclude that, in contrast to L-arginine, BH(4) does not inhibit the generation of superoxide by controlling electron transfer through the enzyme but by stimulating the formation of the heme-peroxo species. 相似文献
2.
Inhibition of heat shock protein 90 (hsp90) in proliferating endothelial cells uncouples endothelial nitric oxide synthase activity 总被引:11,自引:0,他引:11
Dual increases in nitric oxide ((*)NO) and superoxide anion (O(2)(*-)) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of (*)NO generation to offset the increase in O(2)(*-) that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase (*)NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of (*)NO and O(2)(*-). Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 microM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated (*)NO production and increased L(omega)-nitroargininemethylester (L-NAME)-inhibitable O(2)(*-) generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O(2)(*-) generation, confirming that during proliferation eNOS generates (*)NO. Our findings demonstrate that hsp90 plays an important role in maintaining (*)NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit (*)NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future. 相似文献
3.
Sud N Sharma S Wiseman DA Harmon C Kumar S Venema RC Fineman JR Black SM 《American journal of physiology. Lung cellular and molecular physiology》2007,293(6):L1444-L1453
Previously, we have shown that pulmonary arterial endothelial cells (PAECs) isolated from fetal lambs produce significant levels of nitric oxide (NO) but minimal superoxide upon stimulation, whereas PAECs isolated from 4-wk-old lambs produce significant amounts of both NO and superoxide. These data indicated that a certain degree of uncoupling of endothelial NO synthase (eNOS) occurs in PAECs during postnatal development. In this study, we sought to extend these studies by investigating the potential role of heat shock protein 90 (HSP90) in eNOS coupling. Western blot analyses revealed higher HSP90 expression in PAECs isolated from fetal compared with 4-wk-old lambs, whereas the analysis of recombinant human eNOS activation in vitro in the presence of HSP90 indicated that HSP90 significantly augmented NO production while inhibiting superoxide generation from eNOS. To further investigate whether HSP90 could be involved in uncoupling of eNOS in PAECs isolated from 4-wk-old lambs, we utilized an adenovirus to overexpress HSP90. We found that overexpression of HSP90 significantly increased the shear-stimulated association of HSP90 with eNOS and led to significant increases in NO production and reduced NOS-dependent superoxide generation. Conversely, the exposure of PAECs isolated from fetal lambs to the HSP90 inhibitor radicicol led to significant decreases in eNOS-HSP90 interactions, decreased shear-stimulated NO generation, and increased NOS-dependent superoxide production indicative of eNOS uncoupling. Finally, we examined eNOS-HSP90 interactions in our lamb model of pulmonary hypertension associated with increased pulmonary blood flow (shunt). Our data indicate that HSP90-eNOS interactions were decreased in shunt lambs and that this was associated with decreased NO generation and an increase in eNOS-dependent generation of superoxide. Together, our data support a significant role for HSP90 in promoting NO generation and inhibiting superoxide generation by eNOS and indicate that the disruption of this interaction may be involved in the endothelial dysfunction associated with pulmonary hypertension. 相似文献
4.
Heat shock protein 90 mediates the balance of nitric oxide and superoxide anion from endothelial nitric-oxide synthase 总被引:25,自引:0,他引:25
Pritchard KA Ackerman AW Gross ER Stepp DW Shi Y Fontana JT Baker JE Sessa WC 《The Journal of biological chemistry》2001,276(21):17621-17624
The balance of nitric oxide (.NO) and superoxide anion (O(2)) plays an important role in vascular biology. The association of heat shock protein 90 (Hsp90) with endothelial nitric-oxide synthase (eNOS) is a critical step in the mechanisms by which eNOS generates.NO. As eNOS is capable of generating both.NO and O(2), we hypothesized that Hsp90 might also mediate eNOS-dependent O(2) production. To test this hypothesis, bovine coronary endothelial cells (BCEC) were pretreated with geldanamycin (GA, 10 microg/ml; 17.8 microm) and then stimulated with the calcium ionophore, (5 microm). GA significantly decreased -stimulated eNOS-dependent nitrite production (p < 0.001, n = 4) and significantly increased -stimulated eNOS-dependent O(2) production (p < 0.001, n = 8). increased phospho-eNOS(Ser-1179) levels by >1.6-fold over vehicle (V)-treated levels. Pretreatment with GA by itself or with increased phospho-eNOS levels. In unstimulated V-treated BCEC cultures low amounts of Hsp90 were found to associate with eNOS. Pretreatment with GA and/or increased the association of Hsp90 with eNOS. These data show that Hsp90 is essential for eNOS-dependent.NO production and that inhibition of ATP-dependent conformational changes in Hsp90 uncouples eNOS activity and increases eNOS-dependent O(2) production. 相似文献
5.
Venema RC Venema VJ Ju H Harris MB Snead C Jilling T Dimitropoulou C Maragoudakis ME Catravas JD 《American journal of physiology. Heart and circulatory physiology》2003,285(2):H669-H678
Soluble guanylate cyclase (sGC) is an important downstream intracellular target of nitric oxide (NO) that is produced by endothelial NO synthase (eNOS) and inducible NO synthase (iNOS). In this study, we demonstrate that sGC exists in a complex with eNOS and heat shock protein 90 (HSP90) in aortic endothelial cells. In addition, we show that in aortic smooth muscle cells, sGC forms a complex with HSP90. Formation of the sGC/eNOS/HSP90 complex is increased in response to eNOS-activating agonists in a manner that depends on HSP90 activity. In vitro binding assays with glutathione S-transferase fusion proteins that contain the alpha- or beta-subunit of sGC show that the sGC beta-subunit interacts directly with HSP90 and indirectly with eNOS. Confocal immunofluorescent studies confirm the subcellular colocalization of sGC and HSP90 in both endothelial and smooth muscle cells. Complex formation of sGC with HSP90 facilitates responses to NO donors in cultured cells (cGMP accumulation) as well as in anesthetized rats (hypotension). These complexes likely function to stabilize sGC as well as to provide directed intracellular transfer of NO from NOS to sGC, thus preventing inactivation of NO by superoxide anion and formation of peroxynitrite, which is a toxic molecule that has been implicated in the pathology of several vascular diseases. 相似文献
6.
A protein inhibitor of neuronal nitric oxide synthase (nNOS) was identified and designated as PIN. PIN was reported to inhibit nNOS activity in cell lysates through disruption of enzyme dimerization. However, there has been lack of direct characterization of the effect of PIN on NO production from purified nNOS. Furthermore, nNOS also generates superoxide (.O(2)(-)) at low levels of L-arginine. It is unknown whether PIN affects .O(2)(-) generation from nNOS. Therefore, we performed direct measurements of the effects of PIN on NO and .O(2)(-) generation from purified nNOS using electron paramagnetic resonance spin trapping techniques. nNOS was isolated by affinity chromatography and a fusion protein CBP-PIN was used to probe the effect of PIN. While the tag CBP did not affect nNOS activity, CBP-PIN caused a dose-dependent inhibition on both NO and L-citrulline production. In the absence of L-arginine, strong .O(2)(-) generation was observed from nNOS, and this was blocked by CBP-PIN in a dose-dependent manner. With low-temperature polyacrylamide gel electrophoresis, neither CBP nor CBP-PIN was found to affect nNOS dimerization. Thus, these results suggested that PIN not only inhibits NO but also .O(2)(-) production from nNOS, and this is through a mechanism other than decomposition of nNOS dimers. 相似文献
7.
Averna M Stifanese R De Tullio R Salamino F Pontremoli S Melloni E 《The FEBS journal》2008,275(10):2501-2511
We have shown previously that isolated heat shock protein 90 (HSP90) and nitric oxide synthase (NOS), once associated in a heterocomplex, become completely resistant to calpain digestion. In this study, it is shown that, in vivo, under conditions of calpain activation, the protection of NOS degradation occurs. In addition, the extent of NOS degradation is a function of the level of HSP90 expression. Thus, in rat brain, which contains a large excess of HSP90, almost all neuronal NOS is associated with the chaperone protein. In this condition, neuronal NOS retains its full catalytic activity, although limited proteolytic conversion to still active low-molecular-mass (130 kDa) products takes place. In contrast, in aorta, which contains much smaller amounts of HSP90, endothelial NOS is not completely associated with the chaperone, and undergoes extensive degradation with a loss of protein and catalytic activity. On the basis of these findings, we propose a novel role of the HSP90-NOS heterocomplex in protecting in vivo NOS from proteolytic degradation by calpain. The efficiency of this effect is directly related to the level of intracellular HSP90 expression, generating a high HSP90 to NOS ratio, which favours both the formation and stabilization of the HSP90-NOS heterocomplex. This condition seems to occur in rat brain, but not in aorta, thus explaining the higher vulnerability to proteolytic degradation of endothelial NOS relative to neuronal NOS. 相似文献
8.
Nitric oxide (NO) mediates a series of physiological processes, including regulation of vascular tone, macrofage-mediated neurotoxicity, platelet aggregation, learning and long-term potentiation, and neuronal transmission. Although NO mediates several physiological functions, overproduction of NO can be detrimental and play multiple roles in several pathological diseases. Accordingly, more potent inhibitors, more selective for neuronal nitric oxide synthase (nNOS) than endothelial NOS (eNOS) or inducible NOS (iNOS), could be useful in the treatment of cerebral ischemia and other neurodegenerative diseases. We recently described the synthesis of a series of imidazole derivatives. Among them N-(4-nitrophenacyl) imidazole (A) and N-(4-nitrophenacyl)-2-methyl-imidazole (B) were considered selective nNOS inhibitors. In the present study the action mechanism of compounds A and B was analyzed. Spectral changes observed in the presence of compound A indicate that this inhibitor exerts its effect without interaction with heme iron. Moreover compounds A and B, inhibit nNOS "noncompetitively" versus arginine, but "competitively" versus BH(4). 相似文献
9.
Native low-density lipoprotein induces endothelial nitric oxide synthase dysfunction: role of heat shock protein 90 and caveolin-1 总被引:5,自引:0,他引:5
Pritchard KA Ackerman AW Ou J Curtis M Smalley DM Fontana JT Stemerman MB Sessa WC 《Free radical biology & medicine》2002,33(1):52-62
Although native LDL (n-LDL) is well recognized for inducing endothelial cell (EC) dysfunction, the mechanisms remain unclear. One hypothesis is n-LDL increases caveolin-1 (Cav-1), which decreases nitric oxide (*NO) production by binding endothelial nitric oxide synthase (eNOS) in an inactive state. Another is n-LDL increases superoxide anion (O(2)(*-)), which inactivates *NO. To test these hypotheses, EC were incubated with n-LDL and then analyzed for *NO, O(2)(*-), phospho-eNOS (S1179), eNOS, Cav-1, calmodulin (CaM), and heat shock protein 90 (hsp90). n-LDL increased NOx by more than 4-fold while having little effect on A23187-stimulated nitrite production. In contrast, n-LDL decreased cGMP under basal and A23187-stimulated conditions and increased O(2)(*-) by a mechanism that could be inhibited by L-nitroargininemethylester (L-NAME) and BAPTA/AM. n-LDL increased phospho-eNOS by 149%, eNOS by approximately 34%, and Cav-1 by 28%, and decreased the association of hsp90 with eNOS by 49%. n-LDL did not appear to alter eNOS distribution between membrane fractions (approximately 85%) and cytosol (approximately 15%). Only 3-6% of eNOS in membrane fractions was associated with Cav-1. These data support the hypothesis that n-LDL increases O(2)(*-), which scavenges *NO, and suggest that n-LDL uncouples eNOS activity by decreasing the association of hsp90 as an initial step in signaling eNOS to generate O(2)(*-). 相似文献
10.
Nitric oxide (NO) derived from nitric oxide synthase (NOS) is an important paracrine effector that maintains vascular tone. The release of NO mediated by NOS isozymes under various O(2) conditions critically determines the NO bioavailability in tissues. Because of experimental difficulties, there has been no direct information on how enzymatic NO production and distribution change around arterioles under various oxygen conditions. In this study, we used computational models based on the analysis of biochemical pathways of enzymatic NO synthesis and the availability of NOS isozymes to quantify the NO production by neuronal NOS (NOS1) and endothelial NOS (NOS3). We compared the catalytic activities of NOS1 and NOS3 and their sensitivities to the concentration of substrate O(2). Based on the NO release rates predicted from kinetic models, the geometric distribution of NO sources, and mass balance analysis, we predicted the NO concentration profiles around an arteriole under various O(2) conditions. The results indicated that NOS1-catalyzed NO production was significantly more sensitive to ambient O(2) concentration than that catalyzed by NOS3. Also, the high sensitivity of NOS1 catalytic activity to O(2) was associated with significantly reduced NO production and therefore NO concentrations, upon hypoxia. Moreover, the major source determining the distribution of NO was NOS1, which was abundantly expressed in the nerve fibers and mast cells close to arterioles, rather than NOS3, which was expressed in the endothelium. Finally, the perivascular NO concentration predicted by the models under conditions of normoxia was paradoxically at least an order of magnitude lower than a number of experimental measurements, suggesting a higher abundance of NOS1 or NOS3 and/or the existence of other enzymatic or nonenzymatic sources of NO in the microvasculature. 相似文献
11.
12.
Generation of superoxide from nitric oxide synthase 总被引:2,自引:0,他引:2
13.
Biphasic regulation of leukocyte superoxide generation by nitric oxide and peroxynitrite 总被引:2,自引:0,他引:2
Activation of the NADPH oxidase-derived oxidant burst of polymorphonuclear leukocytes (PMNs) is of critical importance in inflammatory disease. PMN-derived superoxide (O(2)) can be scavenged by nitric oxide (NO( small middle dot)) with the formation of peroxynitrite (ONOO(-)); however, questions remain regarding the effects and mechanisms by which NO( small middle dot) and ONOO(-) modulate the PMN oxidative burst. Therefore, we directly measured the dose-dependent effects of NO( small middle dot) and ONOO(-) on O(2) generation from human PMNs stimulated with phorbol 12-myristate 13-acetate using EPR spin trapping. Pretreatment with low physiological (microm) concentrations of NO( small middle dot) from NO( small middle dot) gas had no effect on PMN O(2) generation, whereas high levels (> or =50 microm) exerted inhibition. With ONOO(-) pretreatment, however, a biphasic modulation of O(2) generation was seen with stimulation by microm levels, but inhibition at higher levels. With the NO( small middle dot) donor NOR-1, which provides more sustained release of NO( small middle dot) persisting at the time of O(2) generation, a similar biphasic modulation of O(2) generation was seen, and this was inhibited by ONOO(-) scavengers. The enhancement of O(2) generation by low concentrations of ONOO(-) or NOR-1 was associated with activation of the ERK MAPKs and was blocked by their inhibition. Thus, low physiological levels of NO( small middle dot) present following PMN activation are converted to ONOO(-), which enhances O(2) generation through activation of the ERK MAPK pathway, whereas higher levels of NO( small middle dot) or ONOO(-) feed back and inhibit O(2) generation. This biphasic concentration-dependent regulation of the PMN oxidant burst by NO( small middle dot)-derived ONOO(-) may be of critical importance in regulating the process of inflammation. 相似文献
14.
Majid DS Nishiyama A Jackson KE Castillo A 《American journal of physiology. Regulatory, integrative and comparative physiology》2004,287(1):R27-R32
To evaluate the role of a potential interaction between superoxide anion (O(2)(-)) and nitric oxide (NO) in regulating kidney function, we examined the renal responses to intra-arterial infusion of a superoxide dismutase mimetic, tempol (0.5 mg.kg(-1).min(-1)), in anesthetized dogs treated with or without NO synthase inhibitor, N(omega)-nitro-l-arginine (NLA; 50 microg.kg(-1).min(-1)). In one group of dogs (n = 10), tempol infusion alone for 30 min before NLA infusion did not cause any significant changes in renal blood flow (RBF; 5.2 +/- 0.4 to 5.0 +/- 0.4 ml.min(-1).g(-1)), glomerular filtration rate (GFR; 0.79 +/- 0.04 to 0.77 +/- 0.04 ml.min(-1).g(-1)), urine flow (V; 13.6 +/- 2.1 to 13.9 +/- 2.5 microl.min(-1).g(-1)), or sodium excretion (U(Na)V; 2.4 +/- 0.3 to 2.2 +/- 0.3 micromol.min(-1).g(-1)). Interestingly, when tempol was infused in another group of dogs (n = 12) pretreated with NLA, it caused increases in V (4.4 +/- 0.4 to 9.7 +/- 1.4 microl.min(-1).g(-1)) and in U(Na)V (0.7 +/- 0.1 to 1.3 +/- 0.2 micromol.min(-1).g(-1)) without affecting RBF or GFR. Although NO inhibition caused usual qualitative responses in both groups of dogs, the antidiuretic (47 +/- 5 vs. 26 +/- 4%) and antinatriuretic (67 +/- 4 vs. 45 +/- 11%) responses to NLA were seen much less in dogs pretreated with tempol. NLA infusion alone increased urinary excretion of 8-isoprostane (13.9 +/- 2.7 to 22.8 +/- 3.6 pg.min(-1).g(-1); n = 7), which returned to the control levels (11.6 +/- 3.4 pg.min(-1).g(-1)) during coadministration of tempol. These data suggest that NO synthase inhibition causes enhancement of endogenous O(2)(-) levels and support the hypothesis that NO plays a protective role against the actions of O(2)(-) in the kidney. 相似文献
15.
Neuronal nitric-oxide synthase (NOS I) in the absence of L-arginine has previously been shown to generate superoxide (O-2) (Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H., and Rosen, G. M. (1992) J. Biol. Chem. 267, 24173-24176). In the presence of L-arginine, NOS I produces nitric oxide (NO.). Yet the competition between O2 and L-arginine for electrons, and by implication formation of O-2, has until recently remained undefined. Herein, we investigated this relationship, observing O-2 generation even at saturating levels of L-arginine. Of interest was the finding that the frequently used NOS inhibitor NG-monomethyl L-arginine enhanced O-2 production in the presence of L-arginine because this antagonist attenuated NO. formation. Whereas diphenyliodonium chloride inhibited O-2, blockers of heme such as NaCN, 1-phenylimidazole, and imidazole likewise prevented the formation of O-2 at concentrations that inhibited NO. formation from L-arginine. Taken together these data demonstrate that NOS I generates O-2 and the formation of this free radical occurs at the heme domain. 相似文献
16.
Schumann P Collot V Hommet Y Gsell W Dauphin F Sopkova J MacKenzie ET Duval D Boulouard M Rault S 《Bioorganic & medicinal chemistry letters》2001,11(9):1153-1156
The synthesis and pharmacological evaluation of methoxyindazoles as new inhibitors of neuronal nitric oxide synthase are presented. The 7-methoxyindazole, although less potent than 7-NI, is the most active compound of the series in an in vitro enzymatic assay of neuronal nitric oxide synthase activity. This result shows that the nitro-substitution is not indispensable to the biological activity of the indazole ring. 7-Methoxyindazole possesses in vivo NOS inhibitory as well and related antinociceptive properties. 相似文献
17.
Inhibition of neuronal nitric oxide synthase increases aggressive behavior in mice. 总被引:4,自引:1,他引:4 下载免费PDF全文
G. E. Demas M. J. Eliasson T. M. Dawson V. L. Dawson L. J. Kriegsfeld R. J. Nelson S. H. Snyder 《Molecular medicine (Cambridge, Mass.)》1997,3(9):610-616
BACKGROUND: Mice with targeted disruption of the gene for the neuronal isoform of nitric oxide synthase (nNOS) display exaggerated aggression. Behavioral studies of mice with targeted gene deletions suffer from the criticism that the gene product is missing not only during the assessment period but also throughout development when critical processes, including activation of compensatory mechanisms, may be affected. To address this criticism, we have assessed aggressive behavior in mice treated with a specific pharmacological inhibitor of nNOS. MATERIALS AND METHODS: Aggressive behavior, as well as brain citrulline levels, were monitored in adult male mice after treatment with a specific nNOS inhibitor, 7-nitroindazole (7-NI) (50 mg/kg i.p.), which is known to reduce NOS activity in brain homogenates by > 90%. As controls, animals were treated with a related indazole, 3-indazolinone (3-I) (50 mg/kg i.p.) that does not affect nNOS or with on oil vehicle. RESULTS: Mice treated with 7-NI displayed substantially increased aggression as compared with oil- or 3-I-injected animals when tested in two different models of aggression. Drug treatment did not affect nonspecific locomotor activities or body temperature. Immunohistochemical staining for citrulline in the brain revealed a dramatic reduction in 7-NI-treated animals. CONCLUSIONS: 7-NI augmented aggression in WT mice to levels displayed by nNOS- mice, strongly implying that nNOS is a major mediator of aggression. NOS inhibitors may have therapeutic roles in inflammatory, cardiovascular, and neurologic diseases. The substantial aggressive behavior soon after administration of an nNOS inhibitor raises concerns about adverse behavioral sequelae of such pharmacological agents. 相似文献
18.
19.
Hyperglycemia is the hallmark of diabetes mellitus. Poor glycemic control is correlated with increased cardiovascular morbidity and mortality. High glucose can trigger endothelial cell apoptosis by de-activation of endothelial nitric oxide synthase (eNOS). eNOS was recently demonstrated to be extensively regulated by Akt and heat shock protein 90 (HSP90). Yet, little is known about the molecular mechanisms that regulate eNOS activity during high glucose exposure. The present study was designed to determine the involvement of protein interactions between eNOS and HSP90 in high glucose-induced endothelial cell apoptosis. The protein interaction of eNOS/HSP90 and eNOS/Akt were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to either control-level (5.5 mM) or high-level (33 mM) glucose for different durations (2, 4, 6, and 24 h). The results showed that the protein interactions between eNOS and HSP90 and between eNOS and Akt and the phosphorylation of eNOS were up-regulated by high glucose exposure for 2-4 h. With longer exposures, these effects decreased gradually. During early hours of exposure, the protein interactions of eNOS/HSP90 and eNOS/Akt and the phosphorylation of eNOS were all inhibited by geldanamycin, an HSP90 inhibitor. High glucose-induced endothelial cell apoptosis was also enhanced by geldanamycin and was reversed by NO donors. LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor, inhibited the association of eNOS/Akt and the phosphorylation of eNOS but had no effect on the interaction between eNOS and HSP90 during early hours of exposure. From our results we propose that, in HUVECs, during early phase of high glucose exposure, apoptosis can be prevented by enhancement of eNOS activity through augmentation of the protein interaction between eNOS and HSP90 and recruitment of the activated Akt. With longer exposure, dysregulation of eNOS activity would result in apoptosis. The present study provides a molecular basis for the effects of eNOS in the prevention of endothelial cells apoptosis during early phase of high glucose exposure. These observations may contribute to the understanding of the pathogenesis of vascular complications in diabetes mellitus. 相似文献
20.
Song T Sugimoto K Ihara H Mizutani A Hatano N Kume K Kambe T Yamaguchi F Tokuda M Watanabe Y 《The Biochemical journal》2007,401(2):391-398
Evidence is presented that RSK1 (ribosomal S6 kinase 1), a downstream target of MAPK (mitogen-activated protein kinase), directly phosphorylates nNOS (neuronal nitric oxide synthase) on Ser847 in response to mitogens. The phosphorylation thus increases greatly following EGF (epidermal growth factor) treatment of rat pituitary tumour GH3 cells and is reduced by exposure to the MEK (MAPK/extracellular-signal-regulated kinase kinase) inhibitor PD98059. Furthermore, it is significantly enhanced by expression of wild-type RSK1 and antagonized by kinase-inactive RSK1 or specific reduction of endogenous RSK1. EGF treatment of HEK-293 (human embryonic kidney) cells, expressing RSK1 and nNOS, led to inhibition of NOS enzyme activity, associated with an increase in phosphorylation of nNOS at Ser847, as is also the case in an in vitro assay. In addition, these phenomena were significantly blocked by treatment with the RSK inhibitor Ro31-8220. Cells expressing mutant nNOS (S847A) proved resistant to phosphorylation and decrease of NOS activity. Within minutes of adding EGF to transfected cells, RSK1 associated with nNOS and subsequently dissociated following more prolonged agonist stimulation. EGF-induced formation of the nNOS-RSK1 complex was significantly decreased by PD98059 treatment. Treatment with EGF further revealed phosphorylation of nNOS on Ser847 in rat hippocampal neurons and cerebellar granule cells. This EGF-induced phosphorylation was partially blocked by PD98059 and Ro31-8220. Together, these data provide substantial evidence that RSK1 associates with and phosphorylates nNOS on Ser847 following mitogen stimulation and suggest a novel role for RSK1 in the regulation of nitric oxide function in brain. 相似文献