首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger.  相似文献   

9.
10.
11.
Monoclonal antibodies against a synthetic 12-amino-acid peptide that comprises the immunodominant domain of human immunodeficiency virus type 1 gp41 (amino acids 598 through 609) reacted with astrocytes found in human and rodent central nervous system tissue. The monoclonal antibodies bound to a 43-kDa protein found in central nervous system tissue preparations. These results indicate that human immunodeficiency virus type 1 gp41 contains a common epitope with astrocytes and that an immune response to human immunodeficiency virus type 1 gp41 could generate antibodies that are cross-reactive to astrocytes. Furthermore, anti-astrocyte antibodies, which were directed at a common epitope with the gp41 sequence, were found to be present in cerebrospinal fluid from some AIDS patients with central nervous system complications. Astrocytes regulate the environment for appropriate neuronal function, and astrocyte hyperactivity (astrocytosis) is known to be the common and early pathologic event in brains from patients with central nervous system AIDS. We suggest that antibody-induced effect(s) on astrocytes could lead to the physiologic neuronal dysfunctions observed in AIDS patients.  相似文献   

12.
13.
14.
Susceptible C3H/He mice were immunized with the avirulent Corpus Christi strain of Trypanosoma cruzi and subsequently infected with virulent Brazil stain organisms. Seventy days after infection sera were isolated and analyzed on western blots of electrophoretically separated T. cruzi antigens prepared from culture-form parasites (primarily epimastigotes). More than 25 bands were identified. The antibodies were fractionated by elution from various regions of western blots corresponding to average molecular weights of approximately greater than 130, 77, 70, 60, 48, or 38 kDa. Each of these antibody preparations was then incubated with strips of nitrocellulose containing all of the electrophoretically separated T. cruzi, and cross-reactivity was determined. Antibodies isolated from the 130-, 77-, and 70-kDa regions all cross-reacted with each other. Antibodies eluted from the 60-kDa region bound antigens in the 60-, 70-, and the 77-kDa regions. More importantly, antibodies eluted from every region bound antigens in the 70-kDa region. Conversely, antibodies eluted from this region bound to antigens in all of the other regions. These data indicate the presence of (a) common antigenic epitope(s) in T. cruzi infections in these mice that is predominantly found in the 70-kDa antigen-antibody complex on western blots.  相似文献   

15.
16.
17.
Renibacterium salmoninarum is a gram-positive bacterium that causes bacterial kidney disease in salmonid fish. The virulence mechanisms of R. salmoninarum are not well understood. Production of a 57-kDa protein (p57) has been associated with isolate virulence and is a diagnostic marker for R. salmoninarum infection. Biological activities of p57 include binding to eukaryotic cells and immunosuppression. We previously isolated three monoclonal antibodies (4D3, 4C11, and 4H8) that neutralize p57 activity. These monoclonal antibodies (MAbs) bind to the amino-terminal region of p57 between amino acids 32 though 243; however, the precise locations of the neutralizing epitopes were not determined. Here, we use transposon mutagenesis to map the 4D3, 4C11, and 4H8 epitopes. Forty-five transposon mutants were generated and overexpressed in Escherichia coli BL21(DE3). The ability of MAbs 4D3, 4H8, and 4C11 to bind each mutant protein was assessed by immunoblotting. Transposons inserting between amino acids 51 and 112 disrupted the 4H8 epitope. Insertions between residues 78 and 210 disrupted the 4C11 epitope, while insertions between amino acids 158 and 234 disrupted the 4D3 epitope. The three MAbs failed to bind overlapping, 15-mer peptides spanning these regions, suggesting that the epitopes are discontinuous in conformation. We conclude that recognition of secondary structure on the amino terminus of p57 is important for neutralization. The epitope mapping studies suggest directions for improvement of MAb-based immunoassays for detection of R. salmoninarum-infected fish.  相似文献   

18.
19.
Renibacterium salmoninarum is a gram-positive bacterium that causes bacterial kidney disease in salmonid fish. The virulence mechanisms of R. salmoninarum are not well understood. Production of a 57-kDa protein (p57) has been associated with isolate virulence and is a diagnostic marker for R. salmoninarum infection. Biological activities of p57 include binding to eukaryotic cells and immunosuppression. We previously isolated three monoclonal antibodies (4D3, 4C11, and 4H8) that neutralize p57 activity. These monoclonal antibodies (MAbs) bind to the amino-terminal region of p57 between amino acids 32 though 243; however, the precise locations of the neutralizing epitopes were not determined. Here, we use transposon mutagenesis to map the 4D3, 4C11, and 4H8 epitopes. Forty-five transposon mutants were generated and overexpressed in Escherichia coli BL21(DE3). The ability of MAbs 4D3, 4H8, and 4C11 to bind each mutant protein was assessed by immunoblotting. Transposons inserting between amino acids 51 and 112 disrupted the 4H8 epitope. Insertions between residues 78 and 210 disrupted the 4C11 epitope, while insertions between amino acids 158 and 234 disrupted the 4D3 epitope. The three MAbs failed to bind overlapping, 15-mer peptides spanning these regions, suggesting that the epitopes are discontinuous in conformation. We conclude that recognition of secondary structure on the amino terminus of p57 is important for neutralization. The epitope mapping studies suggest directions for improvement of MAb-based immunoassays for detection of R. salmoninarum-infected fish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号