首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin signaling is regulated by tyrosine phosphorylation of the signaling molecules, such as the insulin receptor and insulin receptor substrates (IRSs). Therefore, the balance between protein-tyrosine kinases and protein-tyrosine phosphatase activities is thought to be important in the modulation of insulin signaling in insulin-resistant states. We thus employed the adenovirus-mediated gene transfer technique, and we analyzed the effect of overexpression of a wild-type protein-tyrosine phosphatase-1B (PTP1B) on insulin signaling in both L6 myocytes and Fao cells. In both cells, PTP1B overexpression blocked insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1 by more than 70% and resulted in a significant inhibition of the association between IRS-1 and the p85 subunit of phosphatidylinositol 3-kinase and Akt phosphorylation as well as mitogen-activated protein kinase phosphorylation. Moreover, insulin-stimulated glycogen synthesis was also inhibited by PTP1B overexpression in both cells. These effects were specific for insulin signaling, because platelet-derived growth factor (PDGF)-stimulated PDGF receptor tyrosine phosphorylation and Akt phosphorylation were not inhibited by PTP1B overexpression. The present findings demonstrate that PTP1B negatively regulates insulin signaling in L6 and Fao cells, suggesting that PTP1B plays an important role in insulin resistance in muscle and liver.  相似文献   

2.
Cellular chromium enhances activation of insulin receptor kinase   总被引:3,自引:0,他引:3  
Wang H  Kruszewski A  Brautigan DL 《Biochemistry》2005,44(22):8167-8175
Chromium has been recognized for decades as a nutritional factor that improves glucose tolerance by enhancing in vivo insulin action, but the molecular mechanism is unknown. Here we report pretreatment of CHO-IR cells with chromium enhances tyrosine phosphorylation of the insulin receptor. Different chromium(III) compounds were effective at enhancing insulin receptor phosphorylation in intact cells, but did not directly activate recombinant insulin receptor kinase. The level of insulin receptor phosphorylation in cells can be increased by inhibition of the opposing protein tyrosine phosphatase (PTP1B), a target for drug development. However, chromium did not inhibit recombinant human PTP1B using either p-nitrophenyl phosphate or the tyrosine-phosphorylated insulin receptor as the substrate. Chromium also did not alter reversible redox regulation of PTP1B. Purified plasma membranes exhibited insulin-dependent kinase activity in assays using substrate peptides mimicking sites of Tyr phosphorylation in the endogenous substrate IRS-1. Plasma membranes prepared from chromium-treated cells had higher specific activity of insulin-dependent kinase relative to controls. We conclude that cellular chromium potentiates insulin signaling by increasing insulin receptor kinase activity, separate from inhibition of PTPase. Our results suggest that nutritional and pharmacological therapies may complement one another to combat insulin resistance, a hallmark of type 2 diabetes.  相似文献   

3.
Previous studies suggested that protein-tyrosine phosphatase 1B (PTP1B) antagonizes insulin action by catalyzing dephosphorylation of the insulin receptor (IR) and/or other key proteins in the insulin signaling pathway. In adipose tissue and muscle of obese humans and rodents, PTP1B expression is increased, which led to the hypothesis that PTP1B plays a role in the pathogenesis of insulin resistance. Consistent with this, mice in which the PTP1B gene was disrupted exhibit increased insulin sensitivity. To test whether increased expression of PTP1B in an insulin-sensitive cell type could contribute to insulin resistance, we overexpressed wild-type PTP1B in 3T3L1 adipocytes using adenovirus-mediated gene delivery. PTP1B expression was increased approximately 3-5-fold above endogenous levels at 16 h, approximately 14-fold at 40 h, and approximately 20-fold at 72 h post-transduction. Total protein-tyrosine phosphatase activity was increased by 50% at 16 h, 3-4-fold at 40 h, and 5-6-fold at 72 h post-transduction. Compared with control cells, cells expressing high levels of PTP1B showed a 50-60% decrease in maximally insulin-stimulated tyrosyl phosphorylation of IR and insulin receptor substrate-1 (IRS-1) and phosphoinositide 3-kinase (PI3K) activity associated with IRS-1 or with phosphotyrosine. Akt phosphorylation and activity were unchanged. Phosphorylation of p42 and p44 MAP kinase (MAPK) was reduced approximately 32%. Overexpression of PTP1B had no effect on basal, submaximally or maximally (100 nm) insulin-stimulated glucose transport or on the EC(50) for transport. Our results suggest that: 1) insulin stimulation of glucose transport in adipocytes requires 相似文献   

4.
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.  相似文献   

5.
Insulin resistance associated to obesity: the link TNF-alpha   总被引:2,自引:0,他引:2  
Adipose tissue secretes proteins which may influence insulin sensitivity. Among them, tumour necrosis factor (TNF)-alpha has been proposed as a link between obesity and insulin resistance because TNF-alpha is overexpressed in adipose tissue from obese animals and humans, and obese mice lacking either TNF-alpha or its receptor show protection against developing insulin resistance. The activation of proinflammatory pathways after exposure to TNF-alpha induces a state of insulin resistance in terms of glucose uptake in myocytes and adipocytes that impair insulin signalling at the level of the insulin receptor substrate (IRS) proteins. The mechanism found in brown adipocytes involves Ser phosphorylation of IRS-2 mediated by TNF-alpha activation of MAPKs. The Ser307 residue in IRS-1 has been identified as a site for the inhibitory effects of TNF-alpha in myotubes, with p38 mitogen-activated protein kinase (MAPK) and inhibitor kB kinase being involved in the phosphorylation of this residue. Moreover, up-regulation of protein-tyrosine phosphatase (PTP)1B expression was recently found in cells and animals treated with TNF-alpha. PTP1B acts as a physiological negative regulator of insulin signalling by dephosphorylating the phosphotyrosine residues of the insulin receptor and IRS-1, and PTP1B expression is increased in peripheral tissues from obese and diabetic humans and rodents. Accordingly, down-regulation of PTP1B activity by treatment with pharmacological agonists of nuclear receptors restores insulin sensitivity in the presence of TNF-alpha. Furthermore, mice and cells deficient in PTP1B are protected against insulin resistance induced by this cytokine. In conclusion, the absence or inhibition of PTP1B in insulin-target tissues could confer protection against insulin resistance induced by cytokines.  相似文献   

6.
7.
Insulin signals are mediated through tyrosine phosphorylation of specific proteins such as insulin receptor substrate 1 (IRS-1) and Shc by the activated insulin receptor (IR). Phosphorylation of both proteins is nearly abolished by an alanine substitution at Tyr-960 (A960) in the beta-subunit of the receptor. However, overexpression of IRS-1 in CHO cells expressing the mutant receptor (A960 cells) restored sufficient tyrosine phosphorylation of IRS-1 to rescue IRS-1/Grb-2 binding and phosphatidylinositol 3' kinase activation during insulin stimulation. Shc tyrosine phosphorylation and its binding to Grb-2 were impaired in the A960 cells and were unaffected by overexpression of IRS-1. Although overexpression of IRS-1 increased IRS-1 binding to Grb-2, ERK-1/ERK-2 activation was not rescued. These data suggest that signaling molecules other than IRS-1, perhaps including Shc, are critical for insulin stimulation of p21ras. Interestingly, overexpression of IRS-1 in the A960 cells restored insulin-stimulated mitogenesis and partially restored insulin stimulation of glycogen synthesis. Thus, IRS-1 tyrosine phosphorylation is sufficient to increase the mitogenic response to insulin, whereas insulin stimulation of glycogen synthesis appears to involve other factors. Moreover, IRS-1 phosphorylation is either not sufficient or not involved in insulin stimulation of ERK.  相似文献   

8.
We hypothesized that levodopa with carbidopa, a common therapy for patients with Parkinson's disease, might contribute to the high prevalence of insulin resistance reported in patients with Parkinson's disease. We examined the effects of levodopa-carbidopa on glycogen concentration, glycogen synthase activity, and insulin-stimulated glucose transport in skeletal muscle, the predominant insulin-responsive tissue. In isolated muscle, levodopa-carbidopa completely prevented insulin-stimulated glycogen accumulation and glucose transport. The levodopa-carbidopa effects were blocked by propranolol, a beta-adrenergic antagonist. Levodopa-carbidopa also inhibited the insulin-stimulated increase in glycogen synthase activity, whereas propranolol attenuated this effect. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate (IRS)-1 was reduced by levodopa-carbidopa, although Akt phosphorylation was unaffected by levodopa-carbidopa. A single in vivo dose of levodopa-carbidopa increased skeletal muscle cAMP concentrations, diminished glycogen synthase activity, and reduced tyrosine phosphorylation of IRS-1. A separate set of rats was treated intragastrically twice daily for 4 wk with levodopa-carbidopa. After 4 wk of treatment, oral glucose tolerance was reduced in rats treated with drugs compared with control animals. Muscles from drug-treated rats contained at least 15% less glycogen and approximately 50% lower glycogen synthase activity compared with muscles from control rats. The data demonstrate beta-adrenergic-dependent inhibition of insulin action by levodopa-carbidopa and suggest that unrecognized insulin resistance may exist in chronically treated patients with Parkinson's disease.  相似文献   

9.
We determined the involvement of Tyr-1158 within the regulatory loop of the insulin receptor (IR) in the generation of insulin-specific responses in situ. For this purpose chimeric receptors with an epidermal growth factor (EGF) receptor extracellular domain and an IR cytoplasmic domain (EIR) were constructed, which allow activation of the cytoplasmic IR domain without activation of endogenous wt-IRs. Tyr-1158 of the chimera EIR was exchanged for Phe, creating a mutant chimeric receptor (EIR-Y1158F). Chimeric receptors were expressed in 3T3-L1 pre-adipocytes, which do not show insulin-specific responses upon EGF stimulation. We found that pre-adipocytes expressing EIR-Y1158F were impaired in their ability to stimulate glycogen synthesis and DNA synthesis upon maximal stimulation with EGF. EIR-Y1158F was impaired in its ability to phosphorylate insulin receptor substrate (IRS)-1 and induce downstream signals of IRS-1 phosphorylation, such as the association of IRS-1 with phosphatidyl-inositol-3'-kinase and the activation of protein kinase B (Akt). In contrast with the phosphorylation of IRS-1, the phosphorylation of IRS-2 and extracellular regulated protein kinase-1/-2 was normal in EIR-Y1158F expressing cells. These observations suggest that the level of IRS-1 phosphorylation rather than the level of IRS-2 phosphorylation mediates insulin-induced glycogen synthesis and DNA synthesis in 3T3-L1 pre-adipocytes.  相似文献   

10.
Regulation of the steady-state tyrosine phosphorylation of the insulin receptor and its postreceptor substrates are essential determinants of insulin signal transduction. However, little is known regarding the molecular interactions that influence the balance of these processes, especially the phosphorylation state of postinsulin receptor substrates, such as insulin receptor substrate-1 (IRS-1). The specific activity of four candidate protein-tyrosine phosphatases (protein-tyrosine phosphatase 1B (PTP1B), SH2 domain-containing PTPase-2 (SHP-2), leukocyte common antigen-related (LAR), and leukocyte antigen-related phosphatase) (LRP) toward IRS-1 dephosphorylation was studied using recombinant proteins in vitro. PTP1B exhibited the highest specific activity (percentage dephosphorylated per microg per min), and the enzyme activities varied over a range of 5.5 x 10(3). When evaluated as a ratio of activity versus IRS-1 to that versus p-nitrophenyl phosphate, PTP1B remained significantly more active by 3.1-293-fold, respectively. Overlay blots with recombinant Src homology 2 domains of IRS-1 adaptor proteins showed that the loss of IRS-1 binding of Crk, GRB2, SHP-2, and the p85 subunit of phosphatidylinositol 3'-kinase paralleled the rate of overall IRS-1 dephosphorylation. Further studies revealed that the adaptor protein GRB2 strongly promoted the formation of a stable protein complex between tyrosine-phosphorylated IRS-1 and catalytically inactive PTP1B, increasing their co-immunoprecipitation from an equimolar solution by 13.5 +/- 3.3-fold (n = 7; p < 0.01). Inclusion of GRB2 in a reaction mixture of IRS-1 and active PTP1B also increased the overall rate of IRS-1 tyrosine dephosphorylation by 2.7-3.9-fold (p < 0.01). These results provide new insight into novel molecular interactions involving PTP1B and GRB2 that may influence the steady-state capacity of IRS-1 to function as a phosphotyrosine scaffold and possibly affect the balance of postreceptor insulin signaling.  相似文献   

11.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   

12.
A protocol was developed in 3T3-L1 adipocytes that resulted in the specific desensitization of glycogen synthase activation by insulin. Cells were pretreated for 15 min with 100 nm insulin, and then recovered for 1.5 h in the absence of hormone. Subsequent basal and insulin-induced phosphorylation of the insulin receptor, IRS-1, MAPK, Akt kinase, and GSK-3 were similar in control and pretreated cells. Additionally, enhanced glucose transport and incorporation into lipid in response to insulin were unaffected. However, pretreatment reduced insulin-stimulated glycogen synthesis by over 50%, due to a nearly complete inhibition of glycogen synthase activation. Removal of extracellular glucose during the recovery period blocked the increase in glycogen levels, and restored insulin-induced glycogen synthase activation. Furthermore, incubation of pretreated 3T3-L1 adipocytes with glycogenolytic agents reversed the desensitization event. Separation of cellular lysates on sucrose gradients revealed that glycogen synthase was primarily located in the dense pellet fraction, with lesser amounts in the lighter fractions. Insulin induced glycogen synthase translocation from the lighter to the denser glycogen-containing fractions. Interestingly, insulin preferentially activated translocated enzyme while having little effect on the majority of glycogen synthase activity in the pellet fraction. In insulin-pretreated cells, glycogen synthase did not return to the lighter fractions during recovery, and thus did not move in response to the second insulin exposure. These results suggest that, in 3T3-L1 adipocytes, the translocation of glycogen synthase may be an important step in the regulation of glycogen synthesis by insulin. Furthermore, intracellular glycogen levels can regulate glycogen synthase activation, potentially through modulation of enzymatic localization.  相似文献   

13.
We have employed C2C12 myotubes to investigate lipid inhibition of insulin-stimulated signal transduction and glucose metabolism. Cells were preincubated for 18 h in the absence or presence of free fatty acids (FFAs) and stimulated with insulin, and the effects on glycogen synthesis and signaling intermediates were determined. While the unsaturated FFAs oleate and linoleate inhibited both basal and insulin-stimulated glycogen synthesis, the saturated FFA palmitate reduced only insulin-stimulated glycogen synthesis, and was found to inhibit insulin-stimulated phosphorylation of glycogen synthase kinase-3 and protein kinase B (PKB). However, no effect of palmitate was observed on tyrosine phosphorylation, p85 association, or phosphatidylinositol 3-kinase activity in IRS-1 immunoprecipitates. In contrast, palmitate promoted phosphorylation of mitogen-activated protein MAP) kinases. Ceramide, a derivative of palmitate, has recently been associated with similar inhibition of PKB, and here, ceramide levels were found to be elevated 2-fold in palmitate-treated C2C12 cells. Incubation of C2C12 cells with ceramide closely reproduced the effects of palmitate, leading to inhibition of glycogen synthesis and PKB and to stimulation of MAP kinase. We conclude that palmitate-induced insulin resistance occurs by a mechanism distinct from that of unsaturated FFAs, and involves elevation of ceramide by de novo synthesis, leading to PKB inhibition without affecting IRS-1 function.  相似文献   

14.
After a single bout of exercise, insulin action is increased in the muscles that were active during exercise. The increased insulin action has been shown to involve glucose transport, glycogen synthesis, and glycogen synthase (GS) activation as well as amino acid transport. A major mechanism involved in increased insulin stimulation of glucose uptake after exercise seems to be the exercise-associated decrease in muscle glycogen content. Muscle glycogen content also plays a pivotal role for the activity of GS and for the ability of insulin to increase GS activity. Insulin signaling in human skeletal muscle is activated by physiological insulin concentrations, but the increase in insulin action after exercise does not seem to be related to increased insulin signaling [insulin receptor tyrosine kinase activity, insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (RS1), IRS-1-associated phosphatidylinositol 3-kinase activity, Akt phosphorylation (Ser(473)), glycogen synthase kinase 3 (GSK3) phosphorylation (Ser(21)), and GSK3alpha activity], as measured in muscle lysates. Furthermore, insulin signaling is also largely unaffected by exercise itself. This, however, does not preclude that exercise influences insulin signaling through changes in the spatial arrangement of the signaling compounds or by affecting unidentified signaling intermediates. Finally, 5'-AMP-activated protein kinase has recently entered the stage as a promising player in explaining at least a part of the mechanism by which exercise enhances insulin action.  相似文献   

15.
Tumor necrosis factor-α (TNF-α) can modulate the signalling capacity of tyrosine kinase receptors; in particular, TNF-α has been shown to mediate the insulin resistance associated with animal models of obesity and noninsulin-dependent diabetes mellitus. In order to determine whether the effects of TNF-α might involve alterations in the expression of specific protein-tyrosine phosphatases (PTPases) that have been implicated in the regulation of growth factor receptor signalling, KRC-7 rat hepatoma cells were treated with TNF-α, and changes in overall tissue PTPase activity and the abundance of three major hepatic PTPases (LAR, PTP1B, and SH-PTP2) were measured in addition to effects of TNF-α on ligand-stimulated autophosphorylation of insulin and epidermal growth factor (EGF) receptors and insulin-stimulated insulin receptor substrate-1 (IRS-1) phosphorylation. TNF-α caused a dose-dependent decrease in insulin-stimulated IRS-1 phosphorylation and EGF-stimulated receptor autophosphorylation to 47–50% of control. Overall PTPase activity in the cytosol fraction did not change with TNF-α treatment, and PTPase activity in the particulate fraction was decreased by 55–66%, demonstrating that increases in total cellular PTPase activity did not account for the observed alterations in receptor signalling. However, immunoblot analysis showed that TNF-α treatment resulted in a 2.5-fold increase in the abundance of SH-PTP2, a 49% decrease in the transmembrane PTPase LAR, and no evident change in the expression of PTP1B. These data suggest that at least part of the TNF-α effect on pathways of reversible tyrosine phosphorylation may be exerted through the dynamic modulation of the expression of specific PTPases. Since SH-PTP2 has been shown to interact directly with both the EGF receptor and IRS-1, increased abundance of this PTPase may mediate the TNF-α effect to inhibit signalling through these proteins. Furthermore, decreased abundance of the LAR PTPase, which has been implicated in the regulation of insulin receptor phosphorylation, may account for the less marked effect of TNF-α on the autophosphorylation state of the insulin receptor while postreceptor actions of insulin are inhibited. J. Cell. Biochem. 64:117–127. © 1997 Wiley-Liss, Inc.  相似文献   

16.
17.
In response to insulin, tyrosine kinase activity of the insulin receptor is stimulated, leading to autophosphorylation and tyrosine phosphorylation of proteins including insulin receptor subunit (IRS)-1, IRS-2, and Shc. Phosphorylation of these proteins leads to activation of downstream events that mediate insulin action. Insulin receptor kinase activity is requisite for the biological effects of insulin, and understanding regulation of insulin receptor phosphorylation and kinase activity is essential to understanding insulin action. Receptor tyrosine kinase activity may be altered by direct changes in tyrosine kinase activity, itself, or by dephosphorylation of the insulin receptor by protein-tyrosine phosphatases. After 1 min of insulin stimulation, the insulin receptor was tyrosine phosphorylated 8-fold more and Shc was phosphorylated 50% less in 32D cells containing both IRS-1 and insulin receptors (32D/IR+IRS-1) than in 32D cells containing only insulin receptors (32D/IR), insulin receptors and IRS-2 (32D/IR+IRS-2), or insulin receptors and a form of IRS-1 that cannot be phosphorylated on tyrosine residues (32D/IR+IRS-1F18). Therefore, IRS-1 and IRS-2 appeared to have different effects on insulin receptor phosphorylation and downstream signaling. Preincubation of cells with pervanadate greatly decreased protein-tyrosine phosphatase activity in all four cell lines. After pervanadate treatment, tyrosine phosphorylation of insulin receptors in insulin-treated 32D/IR, 32D/ IR+IRS-2, and 32D/IR+IRS-1F18 cells was markedly increased, but pervanadate had no effect on insulin receptor phosphorylation in 32D/IR+IRS-1 cells. The presence of tyrosine-phosphorylated IRS-1 appears to increase insulin receptor tyrosine phosphorylation and potentially tyrosine kinase activity via inhibition of protein-tyrosine phosphatase(s). This effect of IRS-1 on insulin receptor phosphorylation is unique to IRS-1, as IRS-2 had no effect on insulin receptor tyrosine phosphorylation. Therefore, IRS-1 and IRS-2 appear to function differently in their effects on signaling downstream of the insulin receptor. IRS-1 may play a major role in regulating insulin receptor phosphorylation and enhancing downstream signaling after insulin stimulation.  相似文献   

18.
Protein kinase C (PKC)-alpha exerts a regulatory function on insulin action. We showed by overlay blot that PKCalpha directly binds a 180-kDa protein, corresponding to IRS-1, and a 30-kDa molecular species, identified as 14-3-3epsilon. In intact NIH-3T3 cells overexpressing insulin receptors (3T3-hIR), insulin selectively increased PKCalpha co-precipitation with IRS-1, but not with IRS-2, and with 14-3-3epsilon, but not with other 14-3-3 isoforms. Overexpression of 14-3-3epsilon in 3T3-hIR cells significantly reduced IRS-1-bound PKCalpha activity, without altering IRS-1/PKCalpha co-precipitation. 14-3-3epsilon overexpression also increased insulin-stimulated insulin receptor and IRS-1 tyrosine phosphorylation, followed by increased activation of Raf1, ERK1/2, and Akt/protein kinase B. Insulin-induced glycogen synthase activity and thymidine incorporation were also augmented. Consistently, selective depletion of 14-3-3epsilon by antisense oligonucleotides caused a 3-fold increase of IRS-1-bound PKCalpha activity and a similarly sized reduction of insulin receptor and IRS-1 tyrosine phosphorylation and signaling. In turn, selective inhibition of PKCalpha expression by antisense oligonucleotides reverted the negative effect of 14-3-3epsilon depletion on insulin signaling. Moreover, PKCalpha inhibition was accompanied by a >2-fold decrease of insulin degradation. Similar results were also obtained by overexpressing 14-3-3epsilon. Thus, in NIH-3T3 cells, insulin induces the formation of multimolecular complexes, including IRS-1, PKCalpha, and 14-3-3epsilon. The presence of 14-3-3epsilon in the complex is not necessary for IRS-1/PKCalpha interaction but modulates PKCalpha activity, thereby regulating insulin signaling and degradation.  相似文献   

19.
In the present study, we identified novel negative cross-talk between the angiotensin II subtype 2 (AT2) receptor and insulin receptor signaling in the regulation of phosphoinositide 3-kinase (PI3K), Akt, and apoptosis in rat pheochromocytoma cell line, PC12W cells, which exclusively express AT2 receptor. We demonstrated that insulin-mediated insulin receptor substrate (IRS)-2-associated PI3K activity was inhibited by AT2 receptor stimulation, whereas IRS-1-associated PI3K activity was not significantly influenced. AT2 receptor stimulation did not change insulin-induced tyrosine phosphorylation of IRS-2 or its association with the p85alpha subunit of PI3K, but led to a significant reduction of insulin-induced p85alpha phosphorylation. AT2 receptor stimulation increased the association of a protein tyrosine phosphatase, SHP-1, with IRS-2. Moreover, we demonstrated that AT2 receptor stimulation inhibited insulin-induced Akt phosphorylation and that insulin-mediated antiapoptotic effect was also blocked by AT2 receptor activation. Overexpression of a catalytically inactive dominant negative SHP-1 markedly attenuated the AT2 receptor- mediated inhibition of IRS-2-associated PI3K activity, Akt phosphorylation, and antiapoptotic effect induced by insulin. Taken together, these results indicate that AT2 receptor-mediated activation of SHP-1 and the consequent inhibition IRS-2-associated PI3K activity contributed at least partly to the inhibition of Akt phosphorylation, thereby inducing apoptosis.  相似文献   

20.
The effects of a high concentration of glucose on the insulin receptor-down signaling were investigated in human hepatoma (HepG2) cells in vitro to delineate the molecular mechanism of insulin resistance under glucose toxicity. Treatment of the cells with high concentrations of glucose (15-33 mm) caused phosphorylation of serine residues of the insulin receptor substrate 1 (IRS-1), leading to reduced electrophoretic mobility of it. The phosphorylation of IRS-1 with high glucose treatment was blocked only by protein kinase C (PKC) inhibitors. The high glucose treatment attenuated insulin-induced association of IRS-1 and phosphatidylinositol 3-kinase and insulin-stimulated phosphorylation of Akt. A metabolic effect of insulin, stimulation of glycogen synthesis, was also inhibited by the treatment. In contrast, insulin-induced association of Shc and Grb2 was not inhibited. Treatment of the cells with high glucose promoted the translocation of PKCepsilon and PKCdelta from the cytosol to the plasma membrane but not that of other PKC isoforms. Finally, PKCepsilon and PKCdelta directly phosphorylated IRS-1 under cell-free conditions. We conclude that a high concentration of glucose causes phosphorylation of IRS-1, leading to selective attenuation of metabolic signaling of insulin. PKCepsilon and PKCdelta are involved in the down-regulation of insulin signaling, and they may lie in a pathway regulating the phosphorylation of IRS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号