首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Facilitation versus competition in grazing herbivore assemblages   总被引:11,自引:0,他引:11  
The importance of facilitation versus competition in structuring herbivore species assemblages is a critical issue in theoretical ecology as well as for practical wildlife management. This paper examines the evidence for facilitation and clarifies our understanding in relation to the mechanisms and the spatial and temporal scales where they occur. Evidence for facilitation through stimulation of grass regrowth during the growing season appears stronger than that for increased resource access through removal of obstructing grass structures during the dormant season. Although facilitation may benefit the nutritional gains obtained by certain species in the short term, these benefits do not appear to be translated into the expected population consequences. We suggest this could be due to seasonal tradeoffs between facilitation and competition, as well as to restrictions on the spatial extent of trophic overlap.  相似文献   

2.
Denitrification in a semi-arid grazing ecosystem   总被引:3,自引:0,他引:3  
The effect of large herbivores on gaseous N loss from grasslands, particularly via denitrification, is poorly understood. In this study, we examined the influence of native migratory ungulates on denitrification in grasslands of Yellowstone National Park in two ways, by (1) examining the effect of artificial urine application on denitrification, and (2) comparing rates inside and outside long-term exclosures at topographically diverse locations. Artificial urine did not influence denitrification 3 and 12 days after application at hilltop, mid-slope, and slope-bottom sites. Likewise, grazers had no effect on community-level denitrification at dry exclosure sites, where rates were low. At mesic sites, however, ungulates enhanced denitrification by as much as 4 kg N ha−1 year−1, which was double atmospheric N inputs to this ecosystem. Denitrification enzyme activity (DEA, a measure of denitrification potential) was positively associated with soil moisture at exclosure sites, and herbivores stimulated DEA when accounting for the soil moisture effect. Glucose additons to soils increased denitrification and nitrate additions had no influence, suggesting that denitrification was limited by the amount of labile soil carbon, which previously has been shown to be enhanced by ungulates in Yellowstone. These results indicate that denitrification can be an ecologically important flux in portions of semi-arid landscapes, and that there is a previously unsuspected regulation of this process by herbivores. Received: 6 March 1998 / Accepted: 28 August 1998  相似文献   

3.
Plant interactions are suggested to shift from competition to facilitation and collapse with increasing grazing pressure. The existence of this full range of plant interactions and the role of underlying mechanisms (i.e. release from competition and protecting effect) in response to herbivory remains poorly documented and mainly described in terrestrial systems. We use a large grazing disturbance gradient (five levels of grazing) to test its effect on the outcome of plant interactions and underlying mechanisms in freshwater ecosystems. In a mesocosm experiment, we manipulated the presence of neighbouring plants to test their negative (competition) or protective (facilitation) effects on target plants along the grazing pressure gradient. We predicted that plant interactions 1) shift from competition to indirect facilitation with increased grazing pressure, 2) indirect facilitation collapses at high levels of grazing, 3) release from competition mainly drives the outcome in lowly grazed conditions and, 4) decreased protection occurs in highly grazed conditions responsible for the collapse of facilitation. This study shows the occurrence of the full range of outcomes in plant interactions under a wide spectrum of grazing pressure and indicates how the complex combination of underlying mechanisms shapes variations in plant interactions. We show that both, the release from competition and the increased protection by neighbouring plants drove the shift from competition to indirect facilitation. Declined protection by neighbouring plants resulted in a collapse of indirect facilitation for survival under intense herbivory. Our study provides the first experimental evidence of indirect facilitation structuring freshwater ecosystems thereby validating important ecological concepts mainly developed for terrestrial ecosystems.  相似文献   

4.
This study describes changes in species diversity and canopy cover in relation to variation in livestock grazing in a semi-arid area in Inner Mongolia, China. Canopy cover for each species was recorded 2 and 3 years after cessation of livestock grazing, as well as in an area with continued grazing. Total species richness, alpha diversity, beta diversity and canopy cover were analysed. Sixty species were recorded during the study; 25 of them were annuals. The total number of species was the same, 52, in the grazed and the protected area, but species richness and alpha diversity per plot were lower in the area protected from grazing. The beta diversity showed little difference between the protected area and the grazed control. The total canopy cover was highest in the protected area, but the cover of annuals was higher in the grazed area. In CA ordination, the difference between treatments increased with time of protection. However, in the short period covered by this study it was difficult to separate the effects of protection from grazing and fluctuation in weather conditions, particularly of precipitation.  相似文献   

5.
Compared to continuous grazing (CG), rotational grazing (RG) increases herbage production and thereby the resilience of grasslands to intensive grazing. Results on feed intake and animal performance, however, are contradictory. Hence, the objective of the study was to determine the effects of RG and CG on herbage mass, digestibility of ingested organic matter (dOM), organic matter intake (OMI) and live weight gain (LWG) of sheep in the Inner Mongolian steppe, China. During June–September 2005–2008, two 2-ha plots were used for each grazing system. In RG, plots were divided into four 0.5-ha paddocks that were grazed for 10 days each at a moderate stocking rate. Instead, CG sheep grazed the whole plots throughout the entire grazing season. At the beginning of every month, dOM was estimated from faecal crude protein concentration. Faeces excretion was determined using titanium dioxide in six sheep per plot. The animals were weighed every month to determine their LWG. Across the years, herbage mass did not differ between systems (p = 0.820). However, dOM, OMI and LWG were lower in RG than in CG (p ≤ 0.005). Thus, our study showed that RG does not improve herbage growth, feed intake and performance of sheep and suggests that stocking rates rather than management system determine the ecological sustainability of pastoral livestock systems in semi-arid environments.  相似文献   

6.
Wang  Xinyu  Li  Frank Yonghong  Wang  Yanan  Liu  Xinmin  Cheng  Jianwei  Zhang  Junzhen  Baoyin  Taogetao  Bardgett  Richard D. 《Plant and Soil》2020,448(1-2):265-276
Plant and Soil - Current studies on the relationship between biodiversity and ecosystem functioning have mostly focused on plant communities. Less is known about the individual and combined effects...  相似文献   

7.
Tree-on-tree competitive interactions may be more important in affecting the distribution of the tree components of savannas than inter-specific competition with grasses. The presence of intraspecific competition is expected to negatively affect inter-tree spacing, individual size distributions and plant physiology as well as survival/mortality. In this field removal experiment on Acacia mellifera, one of South Africa’s most common encroachers on nutrient-poor soils, the growth, water relations and mortalities of shrubs where all neighbouring woody competitors were removed (target) were monitored three times during each of three growing seasons. After 3 years, the nitrogen and carbon isotopic ratios of the study plants were analysed. Target shrubs benefitted from removal of neighbours, resulting in greater growth, less water stress, a relatively small degree of canopy dieback and reduced reliance on N2 fixation. Target shrubs grew by 25 ± 4% in height relative to 7 ± 4% for controls, with the targets suffering a maximum of <15% canopy dieback compared to up to 60% in the controls. Severe environmental stress is known to affect neighbour interactions among shrubs and competition may constrain shrub sizes and avoid density-dependent mortality. In contrast, release from competition in our study may have allowed greater growth of target plants, increasing their total evapo-transpirational leaf surface areas and leaving them vulnerable to drought and water stress. Intratree competition on shallow nutrient-poor soils in savannas may thus aid the persistence of bush encroachment by regulating the sizes of individual shrubs below the threshold of drought vulnerability.  相似文献   

8.
Maestre  Fernando T.  Cortina  Jordi 《Plant and Soil》2002,241(2):279-291
In arid and semi-arid areas with sparse vegetation cover, the spatial pattern of surface soil properties affects water and nutrient flows, and is a question of considerable interest for understanding degradation processes and establishing adequate management measures. In this study, we investigate the spatial distribution of vegetation and surface soil properties (biological crusts, physical crusts, mosses, rock fragments, earthworm casts, fine root accumulation and below-ground stones) in a semi-arid Stipa tenacissima L. steppe in SE Spain. We applied the combination of spatial analysis by distance indices (SADIE) and geostatistics to assess the spatial pattern of soil properties and vegetation, and correlation analyses to explore how these patterns were related. SADIE analysis detected significant clumped patterns in the spatial distribution of vegetation, mosses, fine root accumulation and below-ground stone content. Contoured SADIE index of clustering maps suggested the presence of patchiness in the distribution of earthworm casts, fine roots, below-ground stone content, mosses and biological crusts. Correlation analyses suggested that spatial pattern of some soil properties such as biological crusts, moss cover, surface rock fragments, physical crusts and fine roots were significantly related with above-ground plant distribution. We discuss the spatial arrangement of surface soil properties and suggest mechanistic explanations for the observed spatial patterns and relationships.  相似文献   

9.
A new technique for the modeling of perennial vegetation patchiness in the arid/semiarid climatic zone is suggested. Incorporating the stochasticity that affects life history of seedlings and the deterministic dynamics of soil moisture and biomass, this model is flexible enough to yield qualitatively different forms of spatial organization. In the facilitation-dominated regime, scale free distribution of patch sizes is observed, in correspondence with recent field studies. In the competition controlled case, on the other hand, power-law statistics is valid up to a cutoff, and an intrinsic length scale appears.  相似文献   

10.
The effects of neighboring vegetation and soil fertility on the establishment, survival and growth of tree species were studied in a subtropical old-field area in south Brazil. Seed damage, germination and seedling establishment of four tree species plus growth and survival of two transplanted tree species were monitored under factorial combinations of the following treatments: (1) pioneer vegetation (presence and absence); (2) soil fertility (addition of NPK and control). Facilitation was the main process affecting plant performance. The presence of pioneer vegetation significantly improved germination, establishment, growth and survival of most study species. Around 90% of sown seeds were damaged and the removal of pioneer vegetation significantly increased seed damage for all species studied, decreased germination in three out of four species, and decreased establishment in one species. Moreover a significantly higher seedling growth rate of Inga virescens was found after the first year of the experiment in plots where vegetation was present. The presence of vegetation significantly increased seedling survival of I. virescens by protecting seedlings from leaf loss due to winter frosts. Competition was detected by the second year when a higher growth of transplanted seedlings of the species Araucaria angustifolia occurred in plots where vegetation was present and fertilizer were applied. A lower growth rate was detected in plots where vegetation was present but fertilizer was not applied. These results indicate a balance between competition for soil nutrients and protection by neighbor vegetation. Damage of seedlings by leaf cutter ants was an important barrier for plant survival. Damage occurred in 80% of the A. angustifolia seedlings and 58% of these damaged seedlings died. The presence of neighboring vegetation tended to protect seedlings from ant damage. Although competition occurred, facilitation seems to be the main process driving early successional changes in this subtropical old field. This was mainly due to the improvement of local microclimatic conditions and protection against herbivores by neighboring vegetation. Facilitation occurred during establishment and growth phases in a subtropical area that is considered a productive, low stress environment. Our results indicate that facilitation may be more frequent in productive environments than previously thought.  相似文献   

11.
Floristic changes related to grazing intensity in a Patagonian shrub steppe   总被引:2,自引:0,他引:2  
Sheep grazing in and and semiarid Patagonia have the natural vegetation as their exclusive source of food This paper studies the flonstic changes that occur as a response to grazing in the Stipa speciosa, Stipa humilis, Adesmta campestris, Berberis heterophylla , and Poa lanugmosa community in the SW of Chubut (Argentina) by companson of community characters between areas with different degrees of histoncal grazing Stands located on typical zonal soils with sandy cover were sampled, including pairs of stands from neighbouring fields with different grazing history and two areas where large herbivores had been excluded for 27 and 9 yr, respectively Species cover values were recorded m 37 samples of ca 500 m2 each A PCA species ordination with the aid of site biplot graphs and species cluster analysis allowed for the identification of five groups of species with differential response to grazing Relative cover of shrub species was positively correlated with grazing intensity, but total plant cover and flonstic nchness showed a less obvious decreasing tendency Diversity was not correlated with this gradient Some of the decreasing species belong to the group shared with the more mesic grassy steppe, and some of the increasing ones belong to the one shared with the more xenc low shrub steppe These results are in accordance with models which propose that continuous grazing promotes a xerophytization of and and semiarid plant communities  相似文献   

12.
Vegetation phenology has a strong effect on terrestrial carbon cycles, local weather, and global radiation partitioning between sensible and latent heat fluxes. Based on phenological data that were collected from a typical steppe ecosystem at Xilingol Grazing and Meteorological Station from 1985 to 2003, we studied the phenological characteristics of Leymus chinensis and Stipa krylovii. We found that the dates for budburst of L. chinensis and S. krylovii were delayed with increasing temperature during winter and spring seasons; these results differed from existing research in which earlier spring events were attributed to the changes in increasing air temperature in winter and spring. The results also suggested that water availability was an important controlling factor for phenology in addition to temperature in grassland plants. The classical cumulative temperature model simulated the phenology well in wet years, but not in the beginning of growing season in all years from 1985 to 2003. The disparity between the simulation and the observation appeared to be related to soil water. Based on our research findings, a water-heat-based phenological model was developed for simulating the beginning of growing season for these two grass species. The simulated results of the new model showed a significant correlation with the observation of beginning date of the growing season, and both mean values of the absolute error were less than 6 days.  相似文献   

13.
H Saiz  CL Alados 《PloS one》2012,7(7):e40551
In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences), with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize plant communities, and may contribute to improving management of semi-arid ecosystems.  相似文献   

14.
Lemoine  Nathan P.  Smith  Melinda D. 《Plant Ecology》2019,220(2):227-239
Plant Ecology - Climate change will increase the frequency of droughts over the next century, with severe consequences for ecosystem function in semi-arid grasslands. The shortgrass steppe (SGS)...  相似文献   

15.
Insects feeding on plants may induce chemical and physical changes in the host plants. Here, we present evidence of host plant modification following an insect attack that may be associated with a reduction in intraspecific competition for food. We demonstrate that feeding by larvae of the cranberry fruitworm, Acrobasis vaccinii, induces a change in fruit colour (from green to red) of cranberry fruits, Vaccinium oxycoccos, that is associated with a significant increase in the concentration of anthocyanin. Host fruit colour affected larval foraging behaviour and food acceptance: significantly more cranberry fruitworm larvae were attracted to, and accepted, green rather than red fruits. Our experiments suggest that fruit reddening also prevents exploitation by conspecific larvae of other green fruits adjacent to the attacked fruit.  相似文献   

16.
Models made to explain sudden and irreversible vegetation shifts in semi-arid grasslands typically assume that herbivore density is independent of the state of the vegetation, e.g., under the control of humans. We relax this assumption and investigate the mathematical implications of vegetation-regulated herbivore population dynamics. We show that irreversible vegetation change may also occur in systems where herbivore population dynamics are affected by changes in plant standing crop. Our analysis furthermore shows that irreversible vegetation change may occur for a larger set of soil and climatic conditions when herbivore numbers are independent of the vegetation, as compared to systems where vegetation density determines herbivore population size. Hence, our analysis suggests that irreversible vegetation change is less likely to occur in systems with natural herbivore population dynamics than in systems where humans control herbivore density.  相似文献   

17.
Wang  Yunbo  Wang  Deli  Shi  Baoku  Sun  Wei 《Plant and Soil》2020,447(1-2):581-598
Background and aims

Understanding the influences of environmental variation and anthropogenic disturbance on soil respiration (RS) is critical for accurate prediction of ecosystem C uptake and release. However, surprisingly, little is known about how soil respiration and its components respond to grazing in the context of global climate change (i.e., precipitation or nitrogen deposition increase).

Methods

We conducted a field manipulative grazing experiment with water and nitrogen addition treatments in a meadow grassland on the Songnen Plain, China, and assessed the combined influences of grazing and global change factors on RS, autotrophic respiration (RA), and heterotrophic respiration (RH).

Results

Compared with the control plots, RS, RA and RH all exhibited positive responses to water or nitrogen addition in the wet year, while a similar effect occurred only for RH in the dry year. The responses of RS to precipitation regimes were dominated by both frequency and amount. However, grazing significantly inhibited both soil respiration and its components in all subplots. Further analysis demonstrated that the plant root/shoot ratio, belowground biomass and microbial biomass played dominant roles in shaping these C exchange processes.

Conclusion

These findings suggest that changes in precipitation regimes, nitrogen deposition, and land utilization may significantly alter soil respiration and its component processes by affecting local carbon users (roots and soil microorganism) and carbon substrate supply in meadow steppe grasslands. The future soil carbon sequestration in the studied meadow steppe will be benefited more by the moderate grazing disturbance.

  相似文献   

18.
Liu N  Zhang Y  Chang S  Kan H  Lin L 《PloS one》2012,7(5):e36434
The potential of grazing lands to sequester carbon must be understood to develop effective soil conservation measures and sustain livestock production. Our objective was to evaluate the effects of grazing on soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC) in Typical steppe and Desert steppe ecosystems, which are both important grassland resources for animal grazing and ecological conservation in China, and to derive region-specific soil C changes associated with different stocking rates (ungrazed, UG; lightly grazed, LG; moderately grazed, MG; heavily grazed, HG). This study substantiated that significant higher SOC, TN and MBC appeared with the treatment of LG in typical steppe. From 2004 to 2010, grazing treatments increased soil carbon storage in desert steppe, which was partly due to the grazing history. The higher MBC concentration and MBC/SOC suggest a great potential for carbon sequestration in the desert steppe ecosystem. The greater MBC in desert steppe than typical steppe was mainly the result of higher precipitation and temperature, instead of soil substrate. The change of MBC and the strong positive relationships between MBC and SOC indicated that MBC in the soil was a sensitive index to indicate the dynamics of soil organic carbon in both steppes in Inner Mongolia of China.  相似文献   

19.
Experimental studies of exploitative competition in a grazing stream insect   总被引:9,自引:0,他引:9  
D. D. Hart 《Oecologia》1987,73(1):41-47
Summary Field and laboratory experiments were conducted to determine whether intraspecific competition for food occurs during the larval stage of the periphyton-grazing caddisfly Glossosoma nigrior (Trichoptera: Glossosomatidae). Larvae were placed in field enclosures at densities less than, equal to, or greater than their natural densities. Most of these individuals began to pupate after 3 weeks, whereupon the mass of each individual was determined. Final mass declined significantly as larval densities increased, whereas neither developmental rate nor mortality/emigration rate was significantly affected by density manipulations. a supplemental experiment comparing the final mass of individuals grown at reduced densities in a laboratory stream with individuals from a natural stream bottom confirmed the results of the more extensive field experiment: reductions in density resulted in significant increases in final mass. Periphyton availability in field enclosures declined according to a negative exponential function as larval densities increased. Over the 25-fold range of larval densities used in these experiments, the final mass of individuals increased linearly with periphyton standing crops. This result suggests that Glossosoma larvae may compete for food even at densities below those employed in this study. Path analysis was used to explore the importance of indirect (i.e., exploitative) and direct (i.e, interference) mechanisms for the observed competitive effects. The analysis indicates that a model based solely on exploitation explains nearly as much of the variance in mass as a model incorporating both interference and exploitation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号