首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ju DJ  Byun IG  Park JJ  Lee CH  Ahn GH  Park TJ 《Bioresource technology》2008,99(17):7971-7975
Low cost, locally available biomaterial was tested for its ability to remove reactive dyes from aqueous solution. Granules prepared from dried activated sludge (DAS) were utilized as a sorbent for the uptake of Rhodamine-B (Rh-B) dye. The effects of various experimental parameters (dye concentration, sludge concentrations, swelling, pretreatment and other factors) were investigated and optimal experimental conditions were ascertained. Nearly 15min was required for the equilibrium adsorption, and Rh-B dyes could be removed effectively. Dye removal performance of Rh-B and DAS increased with increasing concentrations. The acid pretreated biomass exhibited a slightly better biosorption capacity than alkali pretreated or non-pretreated biomass. The optimum swelling time for dye adsorption of the DAS within the swelling time range studied was 12h. Both the Freundlich and Langmuir isotherm models could describe the adsorption equilibrium of the reactive dye onto the activated sludge with the Langmuir isotherm showing the better agreement of the two. Second-order kinetic models confirmed the agreement.  相似文献   

3.
Aerated and rotated mode adsorption experiments were carried out for the removal of Congo red from aqueous solution using native and pre-treated mycelial pellets/biomass of Trametes versicolor. The effect of process parameters like contact time, dosage of adsorbent, adsorbate concentration and pH on adsorption was investigated. Higher the dye concentration lower was the adsorption. Equilibrium time was attained at 90 min. Increase in biomass dosage increased the adsorption. Experimental data were analyzed by the Langmuir and Temkin isotherms. Adsorption capacity (Q(0)) of autoclaved biomass was 51.81 mg/g, which was higher than other biomass studied. The second order kinetic model by Ho and Mckay described well the experimental data. Acidic pH was favorable for the adsorption of Congo red. Studies on pH effect and desorption show that chemisorption seems to play a major role in the adsorption process. Among the native and pre-treated biomass studied, autoclaved biomass showed a better adsorption capacity. Utilization of autoclaved biomass is much safer as it does not pose any threat to environment. Aerated mode showed a better adsorption capacity when compared to rotated mode.  相似文献   

4.
Thermodynamic, kinetic and equilibrium studies during the biosorption of Basic blue 41(BB 41) from aqueous solution using Bacillus macerans were carried out with a focus on pH, contact time, temperature, biomass dosage and initial dye concentration. The maximum adsorption capacity was found to be 89.2 mg/g under optimal conditions of pH (10.0) and temperature (25 °C). The biosorption rates obtained were consistent with the pseudo‐second order kinetic models. The equilibrium data were analyzed using linearized forms of Langmuir and Freundlich isotherms, and the Langmuir isotherm was found to provide the best correlation of the experimental data for the biosorption of BB 41. The equilibrium time for the removal of BB 41 by the biomass was attained within 90 min. Thermodynamic parameters such as free energy (<$>\Delta G<$>), enthalpy (<$>\Delta H<$>), and entropy (<$>\Delta S<$>) were also calculated. The results indicate that biosorption is spontaneous and exothermic in nature. The negative value of entropy confirms the decreased randomness at the solid‐liquid interface during the adsorption of BB 41 onto Bacillus macerans.  相似文献   

5.
An isolated fungus, Aspergillus foetidus had the ability to decolourize growth unsupportive medium containing 100 mg L(-1) of reactive black 5 (RB5) dye with >99% efficiency at acidic pH (2-3). Pre-treatment of fungal biomass by autoclaving or exposure to 0.1M sodium hydroxide facilitated more efficient uptake of dye as compared to untreated fungal biomass. Pre-equilibrium biosorption of RB5 dye onto fungus under different temperatures followed pseudo-second-order kinetic model with high degree of correlation coefficients (R(2)>0.99). Biosorption isotherm data fitted better into Freundlich model for lower concentrations of dye probably suggesting the heterogeneous nature of sorption process. Based on the Langmuir isotherm plots the maximum biosorption capacity (Q(0)) value was calculated to be 106 mg g(-1) at 50 degrees C for fungal biomass pre-treated with 0.1M NaOH. Thermodynamic studies revealed that the biosorption process was favourable, spontaneous and endothermic in nature. Recovery of both adsorbate (dye) and adsorbent (fungal biomass) was possible using sodium hydroxide. Recovered fungal biomass could be recycled number of times following desorption of dye using 0.1M NaOH. Fungal biomass pre-treated with NaOH was efficient in decolourizing solution containing mixture of dyes as well as composite raw industrial effluent generated from leather, pharmaceutical and dye manufacturing company.  相似文献   

6.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

7.
This work reports on a study of the biosorption of copper and cobalt, both singly and in combination (in equimolar concentrations), by the resting cells of Penicillium brevicompactum. Equilibrium batch sorption studies were carried out at 30 degrees C and pH 5.0 for a contact time of 1 hour to guarantee that equilibrium was reached. The equilibrium data were analyzed using the Langmuir and Freundlich isotherms. The adsorption of binary mixtures of heavy metal solutions on the fungal biomass was found to be of competitive type where the adsorption capacity for any single metal decreased in the presence of the other. The cobalt ions showed a higher affinity for Penicillium brevicompactum than the copper ions.  相似文献   

8.
9.
In this study, a model synthetic azo dye (Basic red 46) bioremoval by Carpinus betulus sawdust as inexpensive, eco-friendly, and sustainable biosorbent from aqueous solution was examined in a batch biosorption system. The effective environmental parameters on the biosorption process, such as the value of pH, amount of biosorbent, initial dye concentration and contact time were optimized using classical test design. The possible dye-biosorbent interaction was determined by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The equilibrium, thermodynamic, and kinetic studies for the biosorption of Basic red 46 onto the sawdust biomass were performed. In addition, a single-stage batch dye biosorption system was also designed. The dye biosorption yield of biosorbent was significantly influenced by the change of operating variables. The experimental data were best described by the Freundlich isotherm model and both the pseudo-first-order kinetic and the pseudo-second-order kinetic models. Thermodynamic research indicated that the biosorption of dye was feasible and spontaneous. Based on the Langmuir isotherm model, the biosorbent was found to have a maximum biosorption potential higher than many other biosorbents in the literature (264.915?mg g?1). Thus, this investigation presents a novel green option for the assessment of waste sawdust biomass as a cheap and effective biosorbent material.  相似文献   

10.
橘子皮对水中亚甲蓝的吸附性能   总被引:4,自引:0,他引:4  
用低值廉价的橘子皮作为吸附剂对亚甲蓝染料废水进行吸附研究,考察了吸附平衡时间、溶液pH、染料浓度等因素对亚甲蓝吸附的影响,橘子皮主要含有羧基、氨基和磺酸基,橘子皮生物吸附剂对MB的吸附所需平衡时间为1小时,在pH=10的条件下,生物吸附剂对MB的最大吸附量(qm)为370.3±31.0 mg/g,等温吸附线符合Langmuir和Freundlich模式,研究结果表明:橘子皮对染料废水的吸附只需很短的时间则可达到吸附饱和,且吸附量大,具有很好的应用前景。  相似文献   

11.
Biosorption potential of Azolla microphylla for acid red 88 from aqueous solution was investigated under laboratory conditions as a function of initial pH and temperature. The algal biomass exhibited the highest dye sorption capacity at optimum conditions of pH 3 and temperature 30°C. The experimental isotherms were analyzed using five two-parameter models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Flory-Huggins) and five three-parameter models (Redlich-Peterson, Sips, Khan, Radke-Prausnitz, and Toth). Three error analysis methods were used to evaluate the experimental data: correlation coefficient, residual root mean square error (RMSE), and chi-square test to find the best fitting isotherm. In particular, Langmuir (two-parameter) and Khan (three-parameter) models described the dye biosorption isotherm data well at all pH and temperature conditions examined.  相似文献   

12.
This study investigates the equilibrium, kinetics and thermodynamics of Nickel(II) biosorption from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass. The optimum biosorption conditions like pH, contact time, biomass dosage, initial metal ion concentration and temperaturewere determined in the batch method. The biosorbent was characterized by FTIR, SEM and BET surface area analysis. The experimental data were analyzed in terms of pseudo-first-order, pseudo-secondorder and intraparticle diffusion kinetic models, further it was observed that the biosorption process of Ni(II) ions closely followed pseudo-second-order kinetics. The equilibrium data of Ni(II) ions at 303, 313, and 323 K were fitted to the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data andthe maximum monolayer biosorption capacity of the T. versicolor(rainbow) biomass for Ni(II) was 212.5 mg/g at pH 4.0. The calculated thermodynamic parameters, ΔG, ΔH, and ΔS, demonstrated that the biosorption of Ni(II) ions onto the T. versicolor (rainbow) biomass was feasible, spontaneous and endothermic at 303 ~ 323 K. The performance of the proposed fungal biosorbent was also compared with that of many other reported sorbents for Nickel(II) removal and it was observed that the proposed biosorbent is effective in terms of its high sorption capacity.  相似文献   

13.
Adsorption of metal complex dyes from aqueous solutions by pine sawdust   总被引:2,自引:0,他引:2  
An attempt to alleviate the problem caused by the presence of metal complex dyes, mostly used in textile industries, in the textile effluents was undertaken. The effects of adsorbent particle size, pH, adsorbent dose, contact time and initial dye concentrations on the adsorption of metal complex dyes by pine sawdust was investigated. Acidic pH was favorable for the adsorption of metal complex dyes. A contact time of 120 min was required to reach the equilibrium. The experimental isotherm data were analyzed using the Langmuir, Freundlich and Temkin equations. The equilibrium data fit well the Langmuir isotherm. The monolayer adsorption capacities are 280.3 and 398.8 mg dye per g of pine sawdust for Metal Complex Blue and Metal Complex Yellow, respectively. The results indicate that pine sawdust could be employed as low-cost alternative to commercial activated carbon in aqueous solution for the removal of metal complex dyes.  相似文献   

14.
The test fungus Trichoderma harzianum was isolated from the Western Ghats area of Tamilnadu, India. The study involves the feasibility of using T.harzianum to remove erioglaucine from an aqueous solution in batch mode. The batch mode experimental parameters such as effect of agitation time and initial dye concentration, adsorbent mass and pH were determined. The results revealed that, the fungal biomass at 1.5 g/50 ml adsorbent mass removed 75.67–88.05% of dye (10–50 mg/l) in 105 min at pH 4.0. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. From the Langmuir isotherm, the adsorbent had adsorption capacity (Q 0 ) of 3.09 mg/g. Pseudo first and second order rate kinetic equations were applied to the experimental adsorption data. The results indicate that the adsorbent system followed second order rate kinetics.  相似文献   

15.
Chen G  Zeng G  Tang L  Du C  Jiang X  Huang G  Liu H  Shen G 《Bioresource technology》2008,99(15):7034-7040
A kind of agricultural waste, the byproduct of brown-rot fungus Lentinus edodes, was used as an efficient biosorbent for the removal of cadmium from water in this paper. The sorption conditions, such as pH, the dose of biomass and the initial concentration of cadmium were examined. Three kinds of adsorption models were applied to simulate the biosorption data. Uptake of cadmium was higher in weak acid condition than in strong acid condition. Nearly no sorption of cadmium occurred when the pH value was lower than 2.5. Biosorption isothermal data could be well simulated by Freundlich model, and then Langmuir and Temkin model. Langmuir simulation of the biosorption showed that the maximum uptake of cadmium was 5.58mmol/g in weak acid condition, which was much higher than many other biosorbents. The exchanged proton was highly related to the uptake of cadmium in weak acid condition. Fourier transform infrared spectrums and energy-dispersive X-ray microanalyzer were used to reveal ion-exchange mechanism between cadmium and the functional groups or participated inorganic metal ions during biosorption.  相似文献   

16.
The biosorption of cadmium ions onto entrapped Trametes versicolor mycelia has been studied in a batch system. The maximum experimental biosorption capacities for entrapped live and dead fungal mycelia of T. versicolor were found as 102.3 +/- 3.2 mg Cd(II) g(-1) and 120.6 +/- 3.8 mg Cd(II) g(-1), respectively. Biosorption equilibrium was established in about 1 h and biosorption was well described by the Langmuir and Freundlich biosorption isotherms. The change in the biosorption capacity with time was found to fit the pseudo-second-order equation. Since the biosorption capacities were relatively high for both entrapped live and dead forms, those fungal forms could be considered as suitable biosorbents for the removal of cadmium in wastewater-treatment systems. The biosorbents were reused in three consecutive adsorption/desorption cycles without a significant loss in the biosorption capacity.  相似文献   

17.
In this study, it was considered that the biosorption of heavy metals by biomass might occur during the bioleaching of fly ash. This work is focused on the biosorption behavior of Al, Fe, Pb and Zn by Aspergillus niger during the bioleaching process. The fungal biomass was contacted with heavy metals solution which extracted from fly ash by using gluconic acid as leaching agent. The equilibrium time for biosorption was about 120 min. The biosorption experiment data at initial pH 6.5 was used to fit the biosorption kinetics and isotherm models. The results indicated that the biosorption of Al, Fe and Zn by A. niger biomass were well described by the pseudo-first order kinetic model. The pseudo-second order kinetic model was more suitable for that of Pb. The Langmuir isotherm model could well describe the biosorption of Fe, Pb and Zn while the Freundlich model could well describe the biosorption of Al. Furthermore, the biosorption of metal ions decreased evidently in the presence of fly ash as compared to that in the absence of fly ash. This research showed that although the biomass sorption occurred during the bioleaching process, it did not inhibit the removal of Al, Fe, Pb and Zn evidently from fly ash.  相似文献   

18.
In this study, the effect of temperature on the equilibrium biosorption of methyl violet dye from aqueous solution using Mansonia wood sawdust was studied. The equilibrium biosorption data were analyzed using three widely applied isotherm models; Langmuir, Freundlich and Redlich–Peterson isotherm. The fit of three linear Langmuir isotherm forms, the Freundlich isotherm, and the Redlich–Peterson isotherm were determined using linear and the non-linear methods. Langmuir isotherm parameters obtained from the three Langmuir linear equations by using linear method were dissimilar, except, when the non-linear method was used. Best fits were yielded with Langmuir and Redlich–Peterson isotherms. The methyl violet biosorption was strongly dependent solution pH and percentage dye removal became significant above pH 7, which was slightly higher than the pHPZC of the sawdust material. In addition, various thermodynamic parameters, such as ΔG°, ΔH°, and ΔS° were calculated. Results suggested that the biosorption was a spontaneous and endothermic process.  相似文献   

19.
The feasibility of using fish (Labeo rohita) scales as low-cost biosorbent for the removal of hazardous Malachite Green (MG) dye from aqueous solutions was investigated. Employing a batch experimental setup, the effect of operational parameters such as biosorbent dose, initial solution pH, contact time, and temperature on the dye removal process was studied. The equilibrium biosorption data followed both Langmuir and Freundlich isotherm models, whereas the experimental kinetic data fitted well to the pseudo-second-order kinetic model. Thermodynamic study indicated spontaneous and endothermic nature of the biosorption process. The results suggest that fish scales could be used as an effective biosorbent for removal of MG dye from aqueous solutions.  相似文献   

20.
The biosorption of reactive dyes (Reactive Blue 2 - RB2 and Reactive Yellow 2 - RY2) onto dried activated sludge was investigated. The dye binding capacity of biosorbent was shown as a function of initial pH, initial dye concentration and type of dye. The equilibrium data fitted very well to both the Freundlich and Langmuir adsorption models. The results showed that both the dyes uptake processes followed the second-order rate expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号