首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An altered cardiac myofilament response to activating Ca(2+) is a hallmark of human heart failure. Phosphorylation of cardiac troponin I (cTnI) is critical in modulating contractility and Ca(2+) sensitivity of cardiac muscle. cTnI can be phosphorylated by protein kinase A (PKA) at Ser(22/23) and protein kinase C (PKC) at Ser(22/23), Ser(42/44), and Thr(143). Whereas the functional significance of Ser(22/23) phosphorylation is well understood, the role of other cTnI phosphorylation sites in the regulation of cardiac contractility remains a topic of intense debate, in part, due to the lack of evidence of in vivo phosphorylation. In this study, we utilized top-down high resolution mass spectrometry (MS) combined with immunoaffinity chromatography to determine quantitatively the cTnI phosphorylation changes in spontaneously hypertensive rat (SHR) model of hypertensive heart disease and failure. Our data indicate that cTnI is hyperphosphorylated in the failing SHR myocardium compared with age-matched normotensive Wistar-Kyoto rats. The top-down electron capture dissociation MS unambiguously localized augmented phosphorylation sites to Ser(22/23) and Ser(42/44) in SHR. Enhanced Ser(22/23) phosphorylation was verified by immunoblotting with phospho-specific antibodies. Immunoblot analysis also revealed up-regulation of PKC-α and -δ, decreased PKCε, but no changes in PKA or PKC-β levels in the SHR myocardium. This provides direct evidence of in vivo phosphorylation of cTnI-Ser(42/44) (PKC-specific) sites in an animal model of hypertensive heart failure, supporting the hypothesis that PKC phosphorylation of cTnI may be maladaptive and potentially associated with cardiac dysfunction.  相似文献   

2.
Activation of cAMP-dependent protein kinase A (PKA) in ventricular myocytes by isoproterenol (Iso) causes phosphorylation of both phospholamban (PLB) and troponin I (TnI) and accelerates relaxation by up to twofold. Because PLB phosphorylation increases sarcoplasmic reticulum (SR) Ca pumping and TnI phosphorylation increases the rate of Ca dissociation from the myofilaments, both factors could contribute to the acceleration of relaxation seen with PKA activation. To compare quantitatively the role of TnI versus PLB phosphorylation, we measured relaxation rates before and after maximal Iso treatment for twitches of matched amplitudes in ventricular myocytes and muscle from wild-type (WT) mice and from mice in which the PLB gene was knocked out (PLB-KO). Because Iso increases contractions, even in the PLB-KO mouse, extracellular [Ca] or sarcomere length was adjusted to obtain matching twitch amplitudes (in the presence and absence of Iso). In PLB-KO myocytes and muscles (which were allowed to shorten), Iso did not alter the time constant (tau) of relaxation ( approximately 29 ms). However, with increasing isometric force development in the PLB-KO muscles, Iso progressively but modestly accelerated relaxation (by 17%). These results contrast with WT myocytes and muscles where Iso greatly reduced tau of cell relaxation and intracellular Ca concentration decline (by 30-50%), independent of mechanical load. The Iso treatment used produced comparable increases in phosphorylation of TnI and PLB in WT. We conclude that the effect of beta-adrenergic activation on relaxation is mediated entirely by PLB phosphorylation in the absence of external load. However, TnI phosphorylation could contribute up to 14-18% of this lusitropic effect in the WT mouse during maximal isometric contractions.  相似文献   

3.
We review development of evidence and current perceptions of the multiple and significant functions of cardiac troponin I in regulation and modulation of cardiac function. Our emphasis is on the unique structure function relations of the cardiac isoform of troponin I, especially regions containing sites of phosphorylation. The data indicate that modifications of specific regions cardiac troponin I by phosphorylations either promote or reduce cardiac contractility. Thus, a homeostatic balance in these phosphorylations is an important aspect of control of cardiac function. A new concept is the idea that the homeostatic mechanisms may involve modifications of intra-molecular interactions in cardiac troponin I.  相似文献   

4.
We have isolated and sequenced a cDNA encoding rat cardiac troponin I. The predicted amino acid sequence was highly identical with previously reported chemically derived amino acid sequences for rabbit and bovine cardiac troponin I. Clones for slow skeletal muscle troponin I were also obtained from neonatal rat cardiac ventricle by the polymerase chain reaction. The nucleotide sequences of these clones were determined to be more than 99% identical with a previously reported rat slow skeletal troponin I cDNA [Koppe et al. (1989) J. Biol. Chem. 264, 14327-14333]. The troponin I clones hybridized to RNA from the appropriate muscle from adult animals. However, RNA from fetal and neonatal rat heart also hybridized with the slow skeletal troponin I cDNA, demonstrating its expression in fetal and neonatal rat heart. Slow skeletal troponin I steady-state mRNA levels decreased with increasing age, but cardiac troponin I mRNA levels increased through fetal and early neonatal cardiac development. Thus, during fetal and neonatal development, slow skeletal and cardiac troponin I isoforms are coexpressed in the rat heart and regulated in opposite directions. The degree of primary sequence differences in these isoforms, especially at phosphorylation sites, may result in important functional differences in the neonatal myocardium.  相似文献   

5.
Multidimensional heteronuclear magnetic resonance studies of the cardiac troponin C/troponin I(1-80)/troponin I(129-166) complex demonstrated that cardiac troponin I(129-166), corresponding to the adjacent inhibitory and regulatory regions, interacts with and induces an opening of the cardiac troponin C regulatory domain. Chemical shift perturbation mapping and (15)N transverse relaxation rates for intact cardiac troponin C bound to either cardiac troponin I(1-80)/troponin I(129-166) or troponin I(1-167) suggested that troponin I residues 81-128 do not interact strongly with troponin C but likely serve to modulate the interaction of troponin I(129-166) with the cardiac troponin C regulatory domain. Chemical shift perturbations due to troponin I(129-166) binding the cardiac troponin C/troponin I(1-80) complex correlate with partial opening of the cardiac troponin C regulatory domain previously demonstrated by distance measurements using fluorescence methodologies. Fluorescence emission from cardiac troponin C(F20W/N51C)(AEDANS) complexed to cardiac troponin I(1-80) was used to monitor binding of cardiac troponin I(129-166) to the regulatory domain of cardiac troponin C. The apparent K(d) for cardiac troponin I(129-166) binding to cardiac troponin C/troponin I(1-80) was 43.3 +/- 3.2 microM. After bisphosphorylation of cardiac troponin I(1-80) the apparent K(d) increased to 59.1 +/- 1.3 microM. Thus, phosphorylation of the cardiac-specific N-terminus of troponin I reduces the apparent binding affinity of the regulatory domain of cardiac troponin C for cardiac troponin I(129-166) and provides further evidence for beta-adrenergic modulation of troponin Ca(2+) sensitivity through a direct interaction between the cardiac-specific amino-terminus of troponin I and the cardiac troponin C regulatory domain.  相似文献   

6.
The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%P(total)) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samples, the %P(total) of cTnI from nonfailing donor (n = 4), and end-stage failing hearts (n = 10) were 49.5 ± 5.9% and 18.8 ± 2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.  相似文献   

7.
Insulin resistance has been shown to occur as a consequence of heart failure. However, its exact mechanisms in this setting remain unknown. We have previously reported that oxidative stress is enhanced in the skeletal muscle from mice with heart failure after myocardial infarction (MI) (30). This study is aimed to investigate whether insulin resistance in postinfarct heart failure is due to the impairment of insulin signaling in the skeletal muscle caused by oxidative stress. Mice were divided into four groups: sham operated (sham); sham treated with apocynin, an inhibitor of NAD(P)H oxidase activation (10 mmol/l in drinking water); MI; and MI treated with apocynin. After 4 wk, intraperitoneal insulin tolerance tests were performed, and skeletal muscle samples were obtained for insulin signaling measurements. MI mice showed left ventricular dilation and dysfunction by echocardiography and increased left ventricular end-diastolic pressure and lung weight. The decrease in glucose level after insulin load significantly attenuated in MI compared with sham. Insulin-stimulated serine phosphorylation of Akt and glucose transporter-4 translocation were decreased in MI mice by 61 and 23%, respectively. Apocynin ameliorated the increase in oxidative stress and NAD(P)H oxidase activities measured by the lucigenin assay in the skeletal muscle after MI. It also improved insulin resistance and inhibited the decrease of Akt phosphorylation and glucose transporter-4 translocation. Insulin resistance was induced by the direct impairment of insulin signaling in the skeletal muscle from postinfarct heart failure, which was associated with the enhanced oxidative stress via NAD(P)H oxidase.  相似文献   

8.
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT–PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.  相似文献   

9.
The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.  相似文献   

10.
Cardiac troponin C (TnC) is composed of two globular domains connected by a flexible linker. In solution, linker flexibility results in an ill defined orientation of the two globular domains relative to one another. We have previously shown a decrease in linker flexibility in response to cardiac troponin I (cTnI) binding. To investigate the relative orientation of calcium-saturated TnC domains when bound to cTnI, (1)H-(15)N residual dipolar couplings were measured in two different alignment media. Similarity in alignment tensor orientation for the two TnC domains supports restriction of domain motion in the presence of cTnI. The relative spatial orientation of TnC domains bound to TnI was calculated from measured residual dipolar couplings and long-range distance restraints utilizing a rigid body molecular dynamics protocol. The relative domain orientation is such that hydrophobic pockets face each other, forming a latch to constrain separate helical segments of TnI. We have utilized this structure to successfully explain the observed functional consequences of linker region deletion mutants. Together, these studies suggest that, although linker plasticity is important, the ability of TnC to function in muscle contraction can be correlated with a preferred domain orientation and interdomain distance.  相似文献   

11.
Cardiac rupture is a fatal complication of acute myocardial infarction lacking treatment. Here, acute myocardial infarction resulted in rupture in wild-type mice and in mice lacking tissue-type plasminogen activator, urokinase receptor, matrix metalloproteinase stromelysin-1 or metalloelastase. Instead, deficiency of urokinase-type plasminogen activator (u-PA-/-) completely protected against rupture, whereas lack of gelatinase-B partially protected against rupture. However, u-PA-/- mice showed impaired scar formation and infarct revascularization, even after treatment with vascular endothelial growth factor, and died of cardiac failure due to depressed contractility, arrhythmias and ischemia. Temporary administration of PA inhibitor-1 or the matrix metalloproteinase-inhibitor TIMP-1 completely protected wild-type mice against rupture but did not abort infarct healing, thus constituting a new approach to prevent cardiac rupture after acute myocardial infarction.  相似文献   

12.
We present here the solution structure for the bisphosphorylated form of the cardiac N-extension of troponin I (cTnI(1-32)), a region for which there are no previous high-resolution data. Using this structure, the X-ray crystal structure of the cardiac troponin core, and uniform density models of the troponin components derived from neutron contrast variation data, we built atomic models for troponin that show the conformational transition in cardiac troponin induced by bisphosphorylation. In the absence of phosphorylation, our NMR data and sequence analyses indicate a less structured cardiac N-extension with a propensity for a helical region surrounding the phosphorylation motif, followed by a helical C-terminal region (residues 25-30). In this conformation, TnI(1-32) interacts with the N-lobe of cardiac troponin C (cTnC) and thus is positioned to modulate myofilament Ca2+-sensitivity. Bisphosphorylation at Ser23/24 extends the C-terminal helix (residues 21-30) which results in weakening interactions with the N-lobe of cTnC and a re-positioning of the acidic amino terminus of cTnI(1-32) for favorable interactions with basic regions, likely the inhibitory region of cTnI. An extended poly(L-proline)II helix between residues 11 and 19 serves as the rigid linker that aids in re-positioning the amino terminus of cTnI(1-32) upon bisphosphorylation at Ser23/24. We propose that it is these electrostatic interactions between the acidic amino terminus of cTnI(1-32) and the basic inhibitory region of troponin I that induces a bending of cTnI at the end that interacts with cTnC. This model provides a molecular mechanism for the observed changes in cross-bridge kinetics upon TnI phosphorylation.  相似文献   

13.
Heterogeneity in human cardiac troponin I standards   总被引:3,自引:0,他引:3  
The LC-MS analysis of recombinant cardiac troponin I (cTnI) and cTnI extracted from human hearts showed a high degree of structural heterogeneity among all samples. The examined recombinant cTnI samples indicated posttranslational modifications, presumably due to their purification (i.e., 2-mercaptoethanol adducts and carbamylation) and related to their expression (i.e., an N-terminal expression tag). The extracted cTnI samples, while having a higher degree of structural heterogeneity, showed less structural variance between samples than the recombinant proteins. The LC-MS analysis of the extracted cTnI samples provided evidence of posttranslational modification by phosphorylation, acetylation, proteolytic cleavage, and intrachain disulfide bond formation.  相似文献   

14.
Previously, we utilized (15)N transverse relaxation rates to demonstrate significant mobility in the linker region and conformational exchange in the regulatory domain of Ca(2+)-saturated cardiac troponin C bound to the isolated N-domain of cardiac troponin I (Gaponenko, V., Abusamhadneh, E., Abbott, M. B., Finley, N., Gasmi-Seabrook, G., Solaro, R.J., Rance, M., and Rosevear, P.R. (1999) J. Biol. Chem. 274, 16681-16684). Here we show a large decrease in cardiac troponin C linker flexibility, corresponding to residues 85-93, when bound to intact cardiac troponin I. The addition of 2 m urea to the intact cardiac troponin I-troponin C complex significantly increased linker flexibility. Conformational changes in the regulatory domain of cardiac troponin C were monitored in complexes with troponin I-(1-211), troponin I-(33-211), troponin I-(1-80) and bisphosphorylated troponin I-(1-80). The cardiac specific N terminus, residues 1-32, and the C-domain, residues 81-211, of troponin I are both capable of inducing conformational changes in the troponin C regulatory domain. Phosphorylation of the cardiac specific N terminus reversed its effects on the regulatory domain. These studies provide the first evidence that the cardiac specific N terminus can modulate the function of troponin C by altering the conformational equilibrium of the regulatory domain.  相似文献   

15.
16.
We recently reported that mice deficient in the programmed cell death-1 (PD-1) immunoinhibitory coreceptor develop autoimmune dilated cardiomyopathy (DCM), with production of high-titer autoantibodies against a heart-specific, 30-kDa protein. In this study, we purified the 30-kDa protein from heart extract and identified it as cardiac troponin I (cTnI), encoded by a gene in which mutations can cause familial hypertrophic cardiomyopathy (HCM). Administration of monoclonal antibodies to cTnI induced dilatation and dysfunction of hearts in wild-type mice. Monoclonal antibodies to cTnI stained the surface of cardiomyocytes and augmented the voltage-dependent L-type Ca2+ current of normal cardiomyocytes. These findings suggest that antibodies to cTnI induce heart dysfunction and dilatation by chronic stimulation of Ca2+ influx in cardiomyocytes.  相似文献   

17.
Heart failure is becoming a global epidemic. It exerts a staggering toll on quality of life, and substantial medical and economic impact. In a pre-clinical model of cardiac hypertrophy and heart failure, we were able to overcome loss of heart function by administering the TRPV1 antagonist BCTC (4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide). The results presented here identify TRPV1 antagonists as new treatment options for cardiac hypertrophy and heart failure.  相似文献   

18.
Structural consequences of cardiac troponin I phosphorylation   总被引:1,自引:0,他引:1  
beta-Adrenergic stimulation of the heart results in bisphosphorylation of the N-terminal extension of cardiac troponin I (TnI). Bisphosphorylation of TnI reduces the affinity of the regulatory site on troponin C (TnC) for Ca(2+) by increasing the rate of Ca(2+) dissociation. What remains unclear is how the phosphorylation signal is transmitted from one subunit of troponin to another. We have produced a series of mutations in the N-terminal extension of TnI designed to further our understanding of the mechanisms involved. The ability of phosphorylation of the mutant TnIs to affect Ca(2+) sensitivity has been assessed. We find that the Pro residues found in a conserved (Xaa-Pro)(4) motif N-terminal to the phosphorylation sites are not required for the effect of the N-terminal extension on Ca(2+) binding in the presence or absence of phosphorylation. Our experiments also reveal that the full effects of phosphorylation are seen even when residues 1-15 of TnI are deleted. If further residues are removed, not only does the effect of phosphorylation diminish but deletion of the N-terminal extension mimics phosphorylation. We propose that TnI residues 16-29 bind to TnC stabilizing the "open" Ca(2+)-bound state. Phosphorylation (or deletion) prevents this binding, accelerating Ca(2+) release.  相似文献   

19.
The oxidation states in intracellular myoglobin and cytochrome oxidase aa3 were monitored by reflectatnce spectrophotometry in isoltaed perfused rat hearts subjected to an acutely magnesium deficient environment. After exposure to low extracellular [Mg2+]o (i.e., 0.3 mM) for 30 min, more than 80% of the oxymyoglobin converted to its deoxygenated form. The level of reduced cytochrome oxidase aa3 also increased about 80% in low [Mg2+]o. the deoxymyoglobin was converted further to a species identified as ferrymyoglobin by its reaction with Na2S to form ferrous sulfmyoglobin which was optically visible. This process, set into motion by acute Mg deficiency, resulted from a direct accessibility of the exogenous peroxide to the cytosolic protein. The results suggest that a pathway leading to cardiac tissue damage, induced magnesium deficiency, is probably involved in the generation of a ferrylmyoglobin radical which could be prevented by addition of ascorbate, which is known to be a one-electron reductant of this hypervalent form of myglobin. In further studies, we also investigated whether addition of different concentrations of ascorbic acid (AA) to the perfusate could enhance myocardial function after exposure to log [Mg2+]o perfusion. Four concentrations of AA (0.5, 1, 5, 10 mM) were tested, indicate that they exert their effects in a concentration-dependent manner; 1 mM AA was the most effective dose in improving aortic output in a Mg-deficient heart. Ferrylmyoglobin formation was found to be formed considerably before intracellylar release of either creatine phosphokinase or lactic dehydrogenase. These studies may have wide implications as a new mechanisms by which extracellular Mg2+ can induce myocardial injury and subsequent cardiac failure.  相似文献   

20.
Trimethylamine N-oxide (TMAO) is closely related to cardiovascular diseases, particularly heart failure (HF). Recent studies shows that 3,3-dimethyl-1-butanol (DMB) can reduce plasma TMAO levels. However, the role of DMB in overload-induced HF is not well understood. In this research study, we explored the effects and the underlying mechanisms of DMB in overload-induced HF. Aortic banding (AB) surgery was performed in C57BL6/J mice to induce HF, and a subset group of mice underwent a sham operation. After surgery, the mice were fed with a normal diet and given water supplemented with or without 1% DMB for 6 weeks. Cardiac function, plasma TMAO level, cardiac hypertrophy and fibrosis, expression of inflammatory, electrophysiological studies and signaling pathway were analyzed at the sixth week after AB surgery. DMB reduced TMAO levels in overload-induced HF mice. Adverse cardiac structural remodeling, such as cardiac hypertrophy, fibrosis and inflammation, was elevated in overload-induced HF mice. Susceptibility to ventricular arrhythmia also significantly increased in overload-induced HF mice. However, these changes were prevented by DMB treatment. DMB attenuated all of these changes by reducing plasma TMAO levels, hence negatively inhibiting the p65 NF-κB signaling pathway and TGF-β1/Smad3 signaling pathway. DMB plays an important role in attenuating the development of cardiac structural remodeling and electrical remodeling in overload-induced HF mice. This may be attributed to the p65 NF-κB signaling pathway and TGF-β1/Smad3 signaling pathway inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号