首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cytotherapy》2019,21(9):958-972
BackgroundThe Wilms tumor antigen 1 (WT1) is over-expressed in a vast majority of adult and childhood acute leukemia and myelodysplastic syndromes, being lowly or transiently expressed in normal tissues and hematopoietic stem cells (HSCs). A number of HLA-restricted WT1 epitopes are immunogenic, allowing the in vitro induction of WT1-specific cytotoxic T lymphocytes (CTLs) from patients and healthy donors.AimThe aim of the study was to investigate the feasibility of producing WT1-specific CTLs suitable for somatic cell therapy to prevent or treat relapse in children with acute myeloid or lymphoblastic leukemia given haploidentical HSC transplantation (haplo-HSCT).MethodsFor WT1-specific CTL production, donor-derived either peripheral blood mononuclear cells (PBMCs) or CD8+ lymphocytes were stimulated with WT1 peptide-loaded donor dendritic cells in the presence of interleukin (IL)-7 and IL-12. Effector cells were re-stimulated once with irradiated donor PBMCs pulsed with WT1-peptides, and then expanded in an antigen-independent way.ResultsWT1-specific CTLs, displaying high-level cytotoxicity against patients’ leukemia blasts and negligible activity against patients’ non-malignant cells, were obtained from both PBMCs and CD8+ lymphocytes. WT1-specific CTLs obtained from PBMCs showed a better expansion capacity and better anti-leukemia activity than those obtained from CD8+ lymphocytes, even though the difference was not statistically significant. In CTLs derived from PBMCs, both CD8+ and CD4+ subpopulations displayed strong anti-leukemia cytotoxic activity.DiscussionResults of this pre-clinical study pave the way to a somatic cell therapy approach aimed at preventing or treating relapse in children given haplo-HSCT for WT1-positive leukemia.  相似文献   

2.
3.
Adoptive immunotherapy is a new potential method of tumour therapy, among which anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR-T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR-T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR-T cells expanded with anti-CD3/CD28 mAb-coated beads and those expanded with cell-based aAPCs expressing CD19/CD64/CD86/CD137L/mIL-15 counter-receptors were compared. The results showed that the number of CD19-specific CAR-T cells with a 4-1BB and CD28 co-stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR-T cells expanded with aAPCs comparing with the beads. Both CAR-T cells showed significant targeted tumoricidal effects. The CAR-T cells stimulated with aAPCs secreted apoptosis-related cytokines. Moreover, they also possessed marked anti-tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR-T cells genetically modified by piggyBac transposon system.  相似文献   

4.
Low-frequency CTL and low-titer IgM responses against tumor-associated Ag MUC1 are present in cancer patients but do not prevent cancer growth. Boosting MUC1-specific immunity with vaccines, especially effector mechanisms responsible for tumor rejection, is an important goal. We studied immunogenicity, tumor rejection potential, and safety of three vaccines: 1) MUC1 peptide admixed with murine GM-CSF as an adjuvant; 2) MUC1 peptide admixed with adjuvant SB-AS2; and 3) MUC1 peptide-pulsed dendritic cells (DC). We examined the qualitative and quantitative differences in humoral and T cell-mediated MUC1-specific immunity elicited in human MUC1-transgenic (Tg) mice compared with wild-type (WT) mice. Adjuvant-based vaccines induced MUC1-specific Abs but failed to stimulate MUC1-specific T cells. MUC1 peptide with GM-CSF induced IgG1 and IgG2b in WT mice but only IgM in MUC1-Tg mice. MUC1 peptide with SB-AS2 induced high-titer IgG1, IgG2b, and IgG3 Abs in both WT and MUC1-Tg mice. Induction of IgG responses was T cell independent and did not have any effect on tumor growth. MUC1 peptide-loaded DC induced only T cell immunity. If injected together with soluble peptide, the DC vaccine also triggered Ab production. Importantly, the DC vaccine elicited tumor rejection responses in both WT and MUC1-Tg mice. These responses correlated with the induction of MUC1-specific CD4+ and CD8+ T cells in WT mice, but only CD8(+) T cells in MUC1-Tg mice. Even though MUC1-specific CD4+ T cell tolerance was not broken, the capacity of MUC1-Tg mice to reject tumor was not compromised.  相似文献   

5.
beta cell replacement via islet or pancreas transplantation is currently the only approach to cure type 1 diabetic patients. Recurrent beta cell autoimmunity is a critical factor contributing to graft rejection along with alloreactivity. However, the specificity and dynamics of recurrent beta cell autoimmunity remain largely undefined. Accordingly, we compared the repertoire of CD8+ T cells infiltrating grafted and endogenous islets in diabetic nonobese diabetic mice. In endogenous islets, CD8+ T cells specific for an islet-specific glucose-6-phosphatase catalytic subunit-related protein derived peptide (IGRP206-214) were the most prevalent T cells. Similar CD8+ T cells dominated the early graft infiltrate but were expanded 6-fold relative to endogenous islets. Single-cell analysis of the TCR alpha and beta chains showed restricted variable gene usage by IGRP206-214-specific CD8+ T cells that was shared between the graft and endogenous islets of individual mice. However, as islet graft infiltration progressed, the number of IGRP206-214-specific CD8+ T cells decreased despite stable numbers of CD8+ T cells. These results demonstrate that recurrent beta cell autoimmunity is characterized by recruitment to the grafts and expansion of already prevalent autoimmune T cell clonotypes residing in the endogenous islets. Furthermore, depletion of IGRP206-214-specific CD8+ T cells by peptide administration delayed islet graft survival, suggesting IGRP206-214-specific CD8+ T cells play a role early in islet graft rejection but are displaced with time by other specificities, perhaps by epitope spread.  相似文献   

6.
7.
T cells with specificity for antigens derived from Wilms Tumor gene (WT1), Proteinase3 (Pr3), and mucin1 (MUC1) have been demonstrated to lyse acute myeloid leukemia (AML) blasts and multiple-myeloma (MM) cells, and strategies to enhance or induce such tumor-specific T cells by vaccination are currently being explored in multiple clinical trials. To test safety and immunogenicity of a vaccine composed of WT1-, Pr3-, and MUC1-derived Class I-restricted peptides and the pan HLA-DR T helper cell epitope (PADRE) or MUC1-helper epitopes in combination with CpG7909 and MontanideISA51, four patients with AML and five with MM were repetitively vaccinated. No clinical responses were observed. Neither pre-existing nor naive WT1-/Pr3-/MUC1-specific CD8+ T cells expanded in vivo by vaccination. In contrast, a significant decline in vaccine-specific CD8+ T cells was observed. An increase in PADRE-specific CD4+ T helper cells was observed after vaccination but these appeared unable to produce IL2, and CD4+ T cells with a regulatory phenotype increased. Taken into considerations that multiple clinical trials with identical antigens but different adjuvants induced vaccine-specific T cell responses, our data caution that a vaccination with leukemia-associated antigens can be detrimental when combined with MontanideISA51 and CpG7909. Reflecting the time-consuming efforts of clinical trials and the fact that 1/3 of ongoing peptide vaccination trails use CpG and/or Montanide, our data need to be taken into consideration.  相似文献   

8.
9.
Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.  相似文献   

10.
11.
Effective vaccination against tumour-associated antigens (TAA) such as the 5T4 oncofoetal glycoprotein may be limited by the nature of the T cell repertoire and the influence of immunomodulatory factors in particular T regulatory cells (Treg). Here, we identified mouse 5T4-specific T cell epitopes using a 5T4 knock out (5T4KO) mouse and evaluated corresponding wild-type (WT) responses as a model to refine and improve immunogenicity. We have shown that 5T4KO mice vaccinated by replication defective adenovirus encoding mouse 5T4 (Adm5T4) generate potent 5T4-specific IFN-γ CD8 and CD4 T cell responses which mediate significant protection against 5T4 positive tumour challenge. 5T4KO CD8 but not CD4 primed T cells also produced IL-17. By contrast, Adm5T4-immunized WT mice showed no tumour protection consistent with only low avidity CD8 IFN-γ, no IL-17 T cell responses and no detectable CD4 T cell effectors producing IFN-γ or IL-17. Treatment with anti-folate receptor 4 (FR4) antibody significantly reduced the frequency of Tregs in WT mice and enhanced 5T4-specific IFN-γ but reduced IL-10 T cell responses but did not reveal IL-17-producing effectors. This altered balance of effectors by treatment with FR4 antibody after Adm5T4 vaccination provided modest protection against autologous B16m5T4 melanoma challenge. The efficacy of 5T4 and some other TAA vaccines may be limited by the combination of TAA-specific T regs, the deletion and/or alternative differentiation of CD4 T cells as well as the absence of distinct subsets of CD8 T cells.  相似文献   

12.
Although they were used initially as non-specific immunosuppressants in transplantation, CD3-specific monoclonal antibodies have elicited renewed interest owing to their capacity to induce immune tolerance. In mouse models of autoimmune diabetes, CD3-specific antibodies induce stable disease remission by restoring tolerance to pancreatic beta-cells. This phenomenon was extended recently to the clinic--preservation of beta-cell function in recently diagnosed patients with diabetes was achieved by short-term administration of a CD3-specific antibody. CD3-specific antibodies arrest ongoing disease by rapidly clearing pathogenic T cells from the target. Subsequently, they promote long-term T-cell-mediated active tolerance. Recent data indicate that transforming growth factor-beta-dependent CD4+CD25+ regulatory T cells might have a central role in this effect.  相似文献   

13.
Th17 plays important roles in the pathogenesis of various inflammatory and autoimmune diseases. Although the importance of Th17 in tumor immunity has also been suggested, precise roles of tumor-associated antigen-specific Th17 still remain poorly understood, especially in humans. We previously identified WT1332, a 16-mer helper epitope derived from tumor-associated antigen Wilms’ tumor gene 1 (WT1) product, and WT1332-specific Th1 clones were established. In the present study, WT1-specific Th17 clones were established by the stimulation of peripheral blood mononuclear cells with the WT1332 helper peptide under human Th17-polarizing conditions. The WT1-specific Th17 clone exhibited the helper function for proliferation of conventional CD4+ T cells in the antigenic stimulation-specific manner. This is the first report of establishment of functional Th17 clones with both antigen (WT1332) specificity and antigen-specific helper activity. Th17 clones established here and the method to establish antigen-specific Th17 clones should be a useful tool to further analyze the roles of human Th17 in tumor immunity.  相似文献   

14.
15.
T cells recognizing tumor-associated Ags such as Wilms tumor protein (WT1) are thought to exert potent antitumor reactivity. However, no consistent high-avidity T cell responses have been demonstrated in vaccination studies with WT1 as target in cancer immunotherapy. The aim of this study was to investigate the possible role of negative thymic selection on the avidity and specificity of T cells directed against self-antigens. T cell clones directed against the HLA-A*0201-binding WT1(126-134) peptide were generated from both HLA-A*02-positive (self-HLA-restricted) and HLA-A*02-negative [nonself (allogeneic) HLA [allo-HLA]-restricted] individuals by direct ex vivo isolation using tetramers or after in vitro priming and selection. The functional avidity and specificity of these T cell clones was analyzed in-depth. Self-HLA-restricted WT1-specific clones only recognized WT1(126-134) with low avidities. In contrast, allo-HLA-restricted WT1 clones exhibited profound functional reactivity against a multitude of HLA-A*02-positive targets, even in the absence of exogenously loaded WT1 peptide, indicative of Ag-binding promiscuity. To characterize this potential promiscuity, reactivity of the T cell clones against 400 randomly selected HLA-A*0201-binding peptides was investigated. The self-HLA-restricted WT1-specific T cell clones only recognized the WT1 peptide. In contrast, the allo-HLA-restricted WT1-reactive clones recognized besides WT1 various other HLA-A*0201-binding peptides. In conclusion, allogeneic HLA-A*02-restricted WT1-specific T cells isolated from mismatched donors may be more tumor-reactive than their autologous counterparts but can show specific off-target promiscuity of potential clinical importance. As a result of this, administration of WT1-specific T cells generated from HLA-mismatched donors should be performed with appropriate precautions against potential off-target effects.  相似文献   

16.
Wilms' tumor gene (WT1), which is expressed in human pancreatic cancer (PC), is a unique tumor antigen recognized by T-cell-mediated antitumor immune response. Gemcitabine (GEM), a standard therapeutic drug for PC, was examined for the regulation of WT1 expression and the sensitizing effect on PC cells with WT1-specific antitumor immune response. Expression of WT1 was examined by quantitative PCR, immunoblot analysis, and confocal microscopy. Antigenic peptide of WT1 presented on HLA class I molecules was detected by mass spectrometry. WT1-specific T-cell receptor gene-transduced human T cells were used as effecter T cells for the analysis of cytotoxic activity. GEM treatment of human MIAPaCa2 PC cells enhanced WT1 mRNA levels, and this increase is associated with nuclear factor kappa B activation. Tumor tissue from GEM-treated MIAPaCa2-bearing SCID mice also showed an increase in WT1 mRNA. Some human PC cell lines other than MIAPaCa2 showed up-regulation of WT1 mRNA levels following GEM treatment. GEM treatment shifted WT1 protein from the nucleus to the cytoplasm, which may promote proteasomal processing of WT1 protein and generation of antigenic peptide. In fact, presentation of HLA-A*2402-restricted antigenic peptide of WT1 (CMTWNQMNL) increased in GEM-treated MIAPaCa2 cells relative to untreated cells. WT1-specific cytotoxic T cells killed MIAPaCa2 cells treated with an optimal dose of GEM more efficiently than untreated MIAPaCa2 cells. GEM enhanced WT1 expression in human PC cells and sensitized PC cells with WT1-specific T-cell-mediated antitumor immune response.  相似文献   

17.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

18.
The Wilms' tumour 1 (WT1) protein is over-expressed in several types of cancer including leukaemias and might therefore constitute a novel target for immunotherapy. Recently, human leucocyte antigen (HLA) class I-binding WT1 peptides have been identified and shown to stimulate CD8(+) T cells in vitro. For maximal CD8 cell efficacy, CD4(+) helper T cells responding to major histocompatibility complex (MHC) class II-binding epitopes are required. Here, we report that scanning the WT1 protein sequence using an evidence-based predictive computer algorithm (SYFPEITHI) yielded a peptide WT1(124-138) predicted to bind the HLA-DRB1*0401 molecule with high affinity. Moreover, synthetic WT1(124-138)-peptide-pulsed dendritic cells (DC), generated according to a protocol optimised in the present study, sensitised T cells in vitro to proliferate and secrete interferon-gamma (IFN-gamma) when rechallenged with specific peptide-pulsed DC, but not with peripheral blood mononuclear cells (PBMC). These results suggest that the WT1 protein may yield epitopes immunogenic to CD4 as well as CD8 T cells, and therefore constitute a novel potential target for specific immunotherapy.  相似文献   

19.
20.

Background and Purpose

Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor.

Methodology/Principal Findings

Human lung cancer cells variously express a tumor antigen, Wilms'' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells.

Conclusion/Significance

Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号