首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
The cardiovascular consequences of eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-specific intake were evaluated in vivo in a hyperinsulinemia (HI) model induced by dietary fructose intake. Wistar rats were fed a diet containing (or not for control) either EPA or DHA. The rise in blood pressure (BP), heart rate, and ECG were continuously monitored using an intra-abdominal telemetry system. The myocardial phospholipid fatty acid profile was significantly affected by DHA intake but less by EPA intake. The data indicated a reduced rise in BP in both DHA and EPA HI groups compared with controls. This result was confirmed by tail-cuff measurement after 5 wk [133.3 +/- 1.67 and 142.5 +/- 1.12 mmHg in n-3 polyunsaturated fatty acid (PUFA) and control groups, respectively], whereas n-3 PUFA did not affect BP in non-HI rats (116.3 +/- 3.33 mmHg). The heart rate was lower in the HI DHA group than in the other two dietary HI groups. Moreover, DHA induced a significantly shorter QT interval. It is concluded that the cardioactive component of fish oils is DHA through a mechanism that may involve the cardiac adrenergic system.  相似文献   

2.
We investigated whether maternal fat intake alters amniotic fluid and fetal intestine phospholipid n-6 and n-3 fatty acids. Female rats were fed a 20% by weight diet from fat with 20% linoleic acid (LA; 18:2n-6) and 8% alpha-linolenic acid (ALA; 18:3n-3) (control diet, n = 8) or 72% LA and 0.2% ALA (n-3 deficient diet, n = 7) from 2 wk before and then throughout gestation. Amniotic fluid and fetal intestine phospholipid fatty acids were analyzed at day 19 gestation using HPLC and gas-liquid chromotography. Amniotic fluid had significantly lower docosahexaenoic acid (DHA; 22:6n-3) and higher docosapentaenoic acid (DPA; 22:5n-6) levels in the n-3-deficient group than in the control group (DHA: 1.29 +/- 0.10 and 6.29 +/- 0.33 g/100 g fatty acid; DPA: 4.01 +/- 0.35 and 0.73 +/- 0.15 g/100 g fatty acid, respectively); these differences in DHA and DPA were present in amniotic fluid cholesterol esters and phosphatidylcholine (PC). Fetal intestines in the n-3-deficient group had significantly higher LA, arachidonic acid (20:4n-6), and DPA levels; lower eicosapentaenoic acid (EPA; 20:5n-3) and DHA levels in PC; and significantly higher DPA and lower EPA and DHA levels in phosphatidylethanolamine (PE) than in the control group; the n-6-to-n-3 fatty acid ratio was 4.9 +/- 0.2 and 32.2 +/- 2.1 in PC and 2.4 +/- 0.03 and 17.1 +/- 0.21 in PE in n-3-deficient and control group intestines, respectively. We demonstrate that maternal dietary fat influences amniotic fluid and fetal intestinal membrane structural lipid essential fatty acids. Maternal dietary fat can influence tissue composition by manipulation of amniotic fluid that is swallowed by the fetus or by transport across the placenta.  相似文献   

3.
The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that supplementation of GCO increases serum and liver ALA, EPA, DHA and decreases LA and AA in rats. Therefore, the GCO can be considered as a potential, alternate dietary source of ALA.  相似文献   

4.
This study was designed to evaluate the effects of individual dietary long-chain n-3 polyunsaturated fatty acids (LCPUFA) on hypertension and cardiac consecutive disorders in spontaneously hypertensive rats (SHR) as compared to Wistar-Kyoto rats (WKY). Rats were fed for 2 months an eicosapentaenoic (EPA)- or docosahexaenoic acid (DHA)-rich diet (240 mg/day) or an n-3 PUFA-free diet. Male SHR (n=6), implanted with cardiovascular telemetry devices, were housed in individual cages for continuous measurements of cardiovascular parameters (blood pressure (BP) and heart rate (HR)) during either activity or rest periods, ECG were recorded during the quiet period. The n-6 PUFA upstream of arachidonic acid was affected in SHR tissues. The cardiac phospholipid fatty acid profile was significantly affected by dietary DHA supply, and EPA in a very lower extent, since DHA only was incorporated in the membranes instead of n-6 PUFAs. Endothelium n-6 PUFA content increased in all SHR groups. Compared to WKY, linoleic acid content decreased in both studied tissues. Cardiac noradrenalin decreased while the adrenal catecholamine stores decreased in SHR as compared to WKY. Both n-3 PUFA supply induced a decrease of adrenal catecholamine stores. Nevertheless after 6 weeks, DHA but not EPA induced a lowering-blood pressure effect and shortened the QT interval in SHR, most probably through its tissue enrichment and a specific effect on adrenergic function. Dietary DHA supply retards blood pressure development and has cardioprotective effect. These findings, showing the cardioprotective effects of DHA in living animals, were obtained in SHR, but may relate to essential hypertension in humans.  相似文献   

5.
The intake of the essential fatty acid precursor α-linolenic acid (ALA) contributes to ensure adequate n-3 long-chain polyunsaturated fatty acid (LC-PUFA) bioavailability. Conversely, linoleic acid (LA) intake may compromise tissue n-3 PUFA status as its conversion to n-6 LC-PUFA shares a common enzymatic pathway with the n-3 family. This study aimed to measure dietary ALA and LA contribution to LC-PUFA biosynthesis and tissue composition. Rats were fed with control or experimental diets moderately enriched in ALA or LA for 8 weeks. Liver Δ6- and Δ5-desaturases were analyzed and FA composition was determined in tissues (red blood cells, liver, brain and heart). Hepatic Δ6-desaturase activity was activated with both diets, and Δ5-desaturase activity only with the ALA diet. The ALA diet led to higher n-3 LC-PUFA composition, including DHA in brain and heart. The LA diet reduced n-3 content in blood, liver and heart, without impacting n-6 LC-PUFA composition. At levels relevant with human nutrition, increasing dietary ALA and reducing LA intake were both beneficial in increasing n-3 LC-PUFA bioavailability in tissues.  相似文献   

6.
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07–17.1 en%) and ALA (0.02–12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1–3 en% ALA and 1–2 en% LA but was suppressed to basal levels (~2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).  相似文献   

7.
Failure to provide omega 3 fatty acids in the perinatal period results in alterations in nerve growth factor levels, dopamine production and permanent elevations in blood pressure. The present study investigated whether changes in brain (i.e., hypothalamus) glycerophospholipid fatty acid profiles induced by a diet rich in omega 6 fatty acids and very low in alpha-linolenic acid (ALA) during pregnancy and the perinatal period could be reversed by subsequent feeding of a diet containing ALA. Female rats (6 per group) were mated and fed either a low ALA diet or a control diet containing ALA throughout pregnancy and until weaning of the pups at 3 weeks. At weaning, the pups (20 per group) remained on the diet of their mothers until 9 weeks, when half the pups were switched onto the other diet, thus generating four groups of animals. At 33 weeks, pups were killed, the hypothalamus dissected from the male rats and analysed for glycerophospholipid fatty acids. In the animals fed the diet with very little ALA and then re-fed the control diet containing high levels of ALA for 24 weeks, the DHA levels were still significantly less than the control values in PE, PS and PI fractions, by 9%, 18% and 34%, respectively. In this group, but not in the other dietary groups, ALA was detected in all glycerophospholipid classes at 0.2-1.7% of the total fatty acids. The results suggest that omega 6-3 PUFA imbalance early in life leads to irreversible changes in hypothalamic composition. The increased ALA and reduced DHA proportions in the animals re-fed ALA in later life are consistent with a dysfunction or down-regulation of the conversion of ALA to 18:4n-3 by the delta-6 desaturase.  相似文献   

8.
The aim of this study was to evaluate the effects of dietary pure eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the physiology of the heart in normoxic conditions and during postischemic reperfusion. These effects were compared with those of dietary n-6 polyunsaturated fatty acids (PUFA). Rats were fed a diet containing either sunflower seed oil (75 g x kg(-1), SSO group), or a mixture of EPA (20:5 n-3) ethyl ester and SSO (10:90, EPA group), or a mixture of DHA (22:6 n-3) ethyl ester and SSO (10:90, DHA group), or a mixture of EPA + DHA ethyl esters and SSO (4.2:5.8:90, e+D group) for 6 weeks. The hearts were then perfused according to the working mode. The perfusion was maintained either in normoxic conditions or stopped for 17 min (global zero-flow ischemia) and restored for 33 min (reperfusion). The aortic and coronary flows, aortic developed pressure, and electrocardiogram were continuously monitored. When rats were fed a diet containing either EPA and (or) DHA, the n-6/n-3 PUFA ratio of cardiac phospholipids decreased. The proportion of arachidonic acid was reduced more with DHA than dietary EPA. In the EPA group, the percentage of DHA was lower than in the DHA group, but the percentage of EPA and docosapentaenoic acid (22:5 n-3) was higher. These changes in membrane fatty acid composition altered the cardiac function. In normoxic conditions, the coronary flow was higher in the SSO group than in the DHA and EPA groups. The heart rate was lower in the DHA and e+D groups than in the EPA and SSO groups. The aortic flow, cardiac output, and aortic developed pressure were not affected. During postischemic reperfusion, the recovery of aortic flow, coronary flow, and aortic developed pressure was similar in the four groups. A slightly improved recovery of cardiac function was noticed in the EPA group, but the difference was not significant. Feeding rats 5% fish oil + 5% SSO instead of 10% SSO for 8 weeks increased the incorporation of EPA in cardiac phospholipids and favored the recovery (+120%) of aortic flow during postischemic reperfusion. In conclusion, the beneficial effect of dietary fish oil on the recovery of cardiac pump activity during reperfusion was not observed with DHA or EPA alone. It appears to be positively related to the accumulation of EPA in membrane phospholipids. The dietary conditions favouring EPA accumulation remain to be determined.  相似文献   

9.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

10.
Docosahexaenoic acid (DHA) is critical for normal brain development and function. DHA is in danger of being significantly reduced in the human food supply, and the question of whether its metabolic precursor, the essential n-3 alpha linolenic acid (ALA) during pregnancy, can support fetal brain DHA levels for optimal neurodevelopment, is fundamental.Female mice were fed either ALA-enriched or Control diet during pregnancy and lactation. The direct effect of maternal dietary ALA on lipids was analyzed in liver, red blood cells, brain and brain vasculature, together with genes of fatty acid metabolism and transport in three-week-old offspring. The long-term effect of maternal dietary ALA on brain fatty acids and memory was studied in 19-week-old offspring.Three-week-old ALA offspring showed higher levels of n-3 fatty acids in liver, red blood cell, blood-brain barrier (BBB) vasculature and brain parenchyma, DHA enrichment in brain phospholipids and higher gene and protein expression of the DHA transporter, major facilitator superfamily domain containing 2a, compared to Controls. 19-week-old ALA offspring showed higher brain DHA levels and better memory performance than Controls.The increased brain DHA levels induced by maternal dietary ALA during pregnancy-lactation, together with the up-regulated levels of major facilitator superfamily domain containing 2a, may indicate a mode for greater DHA uptake with long-term impact on better memory in ALA offspring.  相似文献   

11.
We examined the effect of altering the linoleic acid (LA, 18:2n-6) to alpha-linolenic acid (ALA, 18:3n-3) ratio in the dietary fats of 3 day old piglets fed formula for 3 weeks. The LA-ALA ratios of the experimental formulas were 0.5:1, 1:1, 2:1, 4:1, and 10:1. The level of LA was held constant at 13% of total fats while the level of ALA varied from 1.3% (10:1 group) to 26.8% (0.5:1 group). Incorporation of the n-3 long chain PUFA EPA and 22:5n-3 into erythrocytes, plasma, liver, and brain tissues was linearly related to dietary ALA. Conversely, incorporation of DHA into all tissues was related to dietary ALA in a curvilinear manner, with the maximum incorporation of DHA appearing to be between the LA-ALA ratios of 4:1 and 2:1. Feeding LA-ALA ratios of 10:1 and 0.5:1 resulted in lower and similar proportions of DHA in tissues despite the very different levels of dietary ALA (1.3 vs. 26.8% of total fats, respectively). These results are relevant to term infant studies in that they confirm our earlier findings of the positive effect on DHA status by lowering the LA-ALA ratio from 10:1 to 3:1 or 4:1, and they predict that ratios of LA-ALA below 4:1 would have little further beneficial effect on DHA status.  相似文献   

12.
Docosahexaenoic acid (DHA, 22:6n-3) must be consumed in the diet or synthesized from n-3 polyunsaturated fatty acid (PUFA) precursors. However, the effect of dietary DHA on the metabolic pathway is not fully understood. Presently, 21-day-old Long Evans rats were weaned onto one of four dietary protocols: 1) 8 weeks of 2% ALA (ALA), 2) 6 weeks ALA followed by 2 weeks of 2% ALA + 2% DHA (DHA), 3) 4 weeks ALA followed by 4 weeks DHA and 4) 8 weeks of DHA. After the feeding period, 2H5-ALA and 13C20-eicosapentaenoic acid (EPA, 20:5n-3) were co-infused and blood was collected over 3 h for determination of whole-body synthesis-secretion kinetics. The synthesis-secretion coefficient (ml/min, means ± SEM) for EPA (0.238±0.104 vs. 0.021±0.001) and DPAn-3 (0.194±0.060 vs. 0.020±0.008) synthesis from plasma unesterified ALA, and DPAn-3 from plasma unesterified EPA (2.04±0.89 vs. 0.163±0.025) were higher (P<.05) after 2 weeks compared to 8 weeks of DHA feeding. The daily synthesis-secretion rate (nmol/d) of DHA from EPA was highest after 4 weeks of DHA feeding (843±409) compared to no DHA (70±22). Liver gene expression of ELOVL2 and FADS2 were lower (P<.05) after 4 vs. 8 weeks of DHA. Higher synthesis-secretion kinetics after 2 and 4 weeks of DHA feeding suggests an increased throughput of the PUFA metabolic pathway. Furthermore, these findings may lead to novel dietary strategies to maximize DHA levels while minimizing dietary requirements.  相似文献   

13.
A rate-limiting step in docosahexaenoic acid (DHA) formation from alpha-linolenic acid (ALA) involves peroxisomal oxidation of 24:6n-3 to DHA. The aim of the study was to determine whether conjugated linoleic acid (CLA) would enhance conversion of ALA to DHA in humans on an ALA-supplemented diet. The subjects (n=8 per group) received daily supplementation of ALA (11g) and either CLA (3.2g) or placebo for 8 weeks. At baseline, 4 and 8 weeks, blood was collected for plasma fatty acid analysis and a number of physiological measures were examined. The ALA-supplemented diet increased plasma levels of ALA and eicosapentaenoic acid (EPA). The addition of CLA to the ALA diet resulted in increased plasma levels of CLA, as well as ALA and EPA. Plasma level of DHA was not increased with either the ALA alone or ALA plus CLA supplementation. The results demonstrated that CLA was not effective in enhancing DHA levels in plasma in healthy volunteers.  相似文献   

14.
Docosahexaenoic acid (DHA), a crucial nervous system n-3 PUFA, may be obtained in the diet or synthesized in vivo from dietary alpha-linolenic acid (LNA). We addressed whether DHA synthesis is regulated by the availability of dietary DHA in artificially reared rat pups, during p8 to p28 development. Over 20 days, one group of rat pups was continuously fed deuterium-labeled LNA (d5-LNA) and no other n-3 PUFA (d5-LNA diet), and a second group of rat pups was fed a d5-LNA diet with unlabeled DHA (d5-LNA + DHA diet). The rat pups were then euthanized, and the total amount of deuterium-labeled docosahexaenoic acid (d5-DHA) (synthesized DHA) as well as other n-3 fatty acids present in various body tissues, was quantified. In the d5-LNA + DHA group, the presence of dietary DHA led to a marked decrease (3- to 5-fold) in the total amount of d5-DHA that accumulated in all tissues that we examined, except in adipose. Overall, DHA accretion from d5-DHA was generally diminished by availability of dietary preformed DHA, inasmuch as this was found to be the predominant source of tissue DHA. When preformed DHA was unavailable, d5-DHA and unlabeled DHA were preferentially accreted in some tissues along with a net loss of unlabeled DHA from other organs.  相似文献   

15.
To estimate in vivo alpha-linolenic acid (ALA; C18:3n-3) conversion, 29 healthy subjects consumed for 28 days a diet providing 7% of energy from linoleic acid (C18:2n-6) and 0.4% from ALA. On day 19, subjects received a single bolus of 30 mg of uniformly labeled [(13)C]ALA and for the next 8 days 10 mg twice daily. Fasting plasma phospholipid concentrations of (12)C- and (13)C-labeled ALA, eicosapentaenoic acid (EPA; C20:5n-3), docosapentaenoic acid (DPA; C22:5n-3), and docosahexaenoic acid (DHA; C22:6n-3) were determined on days 19, 21, 23, 26, 27, and 28. To estimate hepatic conversion of n-3 fatty acids, a tracer model was developed based on the averaged (13)C data of the participants. A similar tracee model was solved using the averaged (12)C values, the kinetic parameters derived from the tracer model, and mean ALA consumption. ALA incorporation into plasma phospholipids was estimated by solving both models simultaneously. It was found that nearly 7% of dietary ALA was incorporated into plasma phospholipids. From this pool, 99.8% was converted into EPA and 1% was converted into DPA and subsequently into DHA. The limited incorporation of dietary ALA into the hepatic phospholipid pool contributes to the low hepatic conversion of ALA into EPA. A low conversion of ALA-derived EPA into DPA might be an additional obstacle for DHA synthesis.  相似文献   

16.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

17.
研究不同ALA含量油脂对高脂模型大鼠组织脂肪酸代谢的影响.60只雄性Wistar大鼠分为正常组、高脂组、花生油组、13%、27%和55% ALA含量油脂组,除正常组和高脂组外,其余各组在饲喂高脂饲料的同时采用灌胃方式连续给予2 mL/kg.bw剂量的受试油.试验6周后分别测定大鼠各组织脂肪酸组成.结果表明,高脂饮食能够降低大鼠各组织n-3脂肪酸含量,但摄入不同ALA油脂可显著增加组织n-3脂肪酸含量,并具有一定的剂量效应关系;但ALA及其代谢产物EPA、DPA和DHA的累积具有组织特异性,其中肾和心组织中ALA累积高于血浆、脑及肝组织,肝和脑组织中EPA和DPA含量增加较显著,而肾和心组织中EPA含量不变,各组织DHA含量增加不显著.不同ALA油脂组C18:3(n-6)和C20:3 (n-6)差异不显著,但与花生油组相比,其血浆、脑和肾组织C20:4含量显著降低.因此,富含ALA含量的油脂能够增加组织中ALA及其代谢产物在组织中的含量,提高其在脑组织中的分布比例,这可能是ALA具有心血管保护作用和促进脑生长发育的作用机制之一.  相似文献   

18.

Background

Δ6-Desaturase (Fads2) is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA) to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA). However, increasing dietary ALA or the direct Fads2 product, stearidonic acid (18:4n-3; SDA), increases tissue levels of eicosapentaenoic acid (20:5n-3; EPA) and docosapentaenoic acid (22:5n-3; DPA), but not DHA. These observations suggest that one or more control points must exist beyond ALA metabolism by Fads2. One possible control point is a second reaction involving Fads2 itself, since this enzyme catalyses desaturation of 24:5n-3 to 24:6n-3, as well as ALA to SDA. However, metabolism of EPA and DPA both require elongation reactions. This study examined the activities of two elongase enzymes as well as the second reaction of Fads2 in order to concentrate on the metabolism of EPA to DHA.

Methodology/Principal Findings

The substrate selectivities, competitive substrate interactions and dose response curves of the rat elongases, Elovl2 and Elovl5 were determined after expression of the enzymes in yeast. The competitive substrate interactions for rat Fads2 were also examined. Rat Elovl2 was active with C20 and C22 polyunsaturated fatty acids and this single enzyme catalysed the sequential elongation reactions of EPA→DPA→24:5n-3. The second reaction DPA→24:5n-3 appeared to be saturated at substrate concentrations not saturating for the first reaction EPA→DPA. ALA dose-dependently inhibited Fads2 conversion of 24:5n-3 to 24:6n-3.

Conclusions

The competition between ALA and 24:5n-3 for Fads2 may explain the decrease in DHA levels observed after certain intakes of dietary ALA have been exceeded. In addition, the apparent saturation of the second Elovl2 reaction, DPA→24:5n-3, provides further explanations for the accumulation of DPA when ALA, SDA or EPA is provided in the diet. This study suggests that Elovl2 will be critical in understanding if DHA synthesis can be increased by dietary means.  相似文献   

19.
We compared the cardiovascular, hepatic and metabolic responses to individual dietary n-3 fatty acids (α-linolenic acid, ALA; eicosapentaenoic acid, EPA; and docosahexaenoic acid, DHA) in a high-carbohydrate, high-fat diet-induced model of metabolic syndrome in rats. Additionally, we measured fatty acid composition of plasma, adipose tissue, liver, heart and skeletal muscle in these rats. The same dosages of ALA and EPA/DHA produced different physiological responses to decrease the risk factors for metabolic syndrome. ALA did not reduce total body fat but induced lipid redistribution away from the abdominal area and favorably improved glucose tolerance, insulin sensitivity, dyslipidemia, hypertension and left ventricular dimensions, contractility, volumes and stiffness. EPA and DHA increased sympathetic activation, reduced the abdominal adiposity and total body fat and attenuated insulin sensitivity, dyslipidemia, hypertension and left ventricular stiffness but not glucose tolerance. However, ALA, EPA and DHA all reduced inflammation in both the heart and the liver, cardiac fibrosis and hepatic steatosis. These effects were associated with complete suppression of stearoyl-CoA desaturase 1 activity. Since the physiological responses to EPA and DHA were similar, it is likely that the effects are mediated by DHA with EPA serving as a precursor. Also, ALA supplementation increased DHA concentrations but induced different physiological responses to EPA and DHA. This result strongly suggests that ALA has independent effects in metabolic syndrome, not relying on its metabolism to DHA.  相似文献   

20.
The consequences of a dietary n-3 PUFA supply was investigated on the blood pressure (BP) increase elicited by left renal artery stenosis in rats distributed in 3 groups (n = 8) fed for 8 weeks a semi-purified diet either as control diet or enriched diets (docosahexaenoic acid, DHA, or eicosapentaenoic acid, EPA). The PUFA intake induced large alterations in heart and kidney phospholipid fatty acid profile, but did not influence body weight, cardiac hypertrophy, renal left atrophy and right hypertrophy. Within 4 weeks, BP raised from 120-180 +/- 2 mm Hg in the control group, but only to 165 +/- 3 mm Hg in the n-3 PUFA groups. After stabilization of BP in the 3 groups, the rats received a short administration of increasing dose of perindopril. The lower dose (0.5 mg/kg) moderately decreased BP only in the control group. With higher doses (1, 5 and 10 mg/kg) BP was normalized in the 3 groups, with a higher amplitude of the BP lowering effect in the control group. A moderate n-3 PUFA intake can contribute to prevent the development of peripheral hypertension in rats by a mechanism that may involve angiotensin converting enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号