首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Ca2+ release from skeletal sarcoplasmic reticulum (SR) could be regulated by at least three mechanisms: 1) Ca2+, 2) calmodulin, and 3) Ca2+/calmodulin-dependent phosphorylation. Bell-shaped Ca2+-dependence, of Ca2+ release from both actively- and passively-loaded SR vesicles suggest that opening and closing of the Ca2+ release channel could be regulated by [Ca2+ o] . The time- and concentration-dependent inhibition of Ca 2+ release from skeletal SR by calmodulin was also studied using passively-Ca2+ loaded SR vesicles. Up to 50% of Ca 2+ release was inhibited by calmodulin (0.01–0.5 µM); this inhibition required 5–15 min preincubation time. The hypothesis that Ca2+/calmodulin-dependent phosphorylation of a 60 kDa protein regulates Ca2+ release from skeletal SR was tested by stopped-flow fluorometry using passively-Ca2+-loaded SR vesicles. Approximately 80% of the initial rates of Ca2+-induced Ca2+ release was inhibited by the phosphorylation within 2 min of incubation of the SR with Mg·ATP and calmodulin. We identified two types of 60 kDa phosphoproteins in the rabbit skeletal SR, which was distinguished by solubility of the protein in CHAPS. The CHAPS-soluble 60 kDa phosphoprotein was purified by column chromatography on DEAE-Sephacel, heparin-agarose, and hydroxylapatite. Analyses of the purified protein indicate that the CHAPS-soluble 60 kDa protein is an isoform of phosphoglucomutase (PGM). cDNAs encoding isoforms of PGM were cloned and sequenced using synthetic oligonucleotides. Two types of PGM isoforms (Type I and Type 11) were identified. The translated amino acid sequences show that Type II isoform is SR-form. Our results are significant in terms of understanding evidence of an association of glycolytic and glycogenolytic enzymes with SR and a role in the regulation of SR functions. (Mol Cell Biochem 114: 105-108, 1992)  相似文献   

2.
The plasma membrane calcium pump, which ejects Ca2+ from the cell, is regulated by calmodulin. In the absence of calmodulin, the pump is relatively inactive; binding of calmodulin to a specific domain stimulates its activity. Phosphorylation of the pump with protein kinase C or A may modify this regulation. Most of the regulatory functions of the enzyme are concentrated in a region at the carboxyl terminus. This region varies substantially between different isoforms of the pump, causing substantial differences in regulatory properties. The pump shares some motifs of the carboxyl terminus with otherwise unrelated proteins: The calmodulin-binding domain is a modified IQ motif (a motif which is present in myosins) and the last 3 residues of isoform 4b are a PDZ target domain. The pump is ubiquitous, with isoforms 1 and 4 of the pump being more widely distributed than 2 and 3. In some kinds of cells isoform 1 or 4 is missing, and is replaced by another isoform. Received: 26 January 1998/Revised: 6 April 1998  相似文献   

3.
The level of resistance to antibiotics of various chemical structure in actinobacteria of the genus Streptomyces is shown to be regulated by Ca2+ ions. The inhibitors of Ca2+/calmodulin and Ca2+/phospholipid-dependent serine/threonine protein kinases (STPK) are found to reduce antibiotic resistance of actinobacteria. The effect of Ca2+-dependent phosphorylation on the activity of the enzymatic aminoglycoside phosphotransferase system protecting actinobacteria from aminoglycoside antibiotics was studied. It is shown that inhibitors of Ca2+/calmodulin and Ca2+/phospholipid-dependent STPK reduced the Ca2+-induced kanamycin resistance in Streptomyces lividans cells transformed by a hybrid plasmid which contained the aminoglycoside phosphotransferase VIII (APHVIII) gene. In S. coelicolor A3(2) cells, the protein kinase PK25 responsible for APHVIII phosphorylation in vitro was identified. It is suggested that STPK play a major role in the regulation of antibiotic resistance in actinobacteria.  相似文献   

4.
The spinach (Spinacia oleracea L.) leaf plasma membrane Ca2+-ATPase is regulated by calmodulin (3-fold stimulation) and limited proteolysis (trypsin; 4-fold stimulation). The plasma membrane Ca2+-ATPase was identified as a 120-kDa polypeptide on western immunoblots using two different antibodies. During trypsin treatment the 120-kDa band diminished and a new band appeared at 109 kDa. The appearance of the 109-kDa band correlated with the increase in enzyme activity following trypsin treatment. The stimulations by calmodulin and trypsin were not additive, suggesting that the 109-kDa polypeptide represents a Ca2+-ATPase lackin a terminal fragment involved in calmodulin regulation. This was confirmed by 125I-calmodulin overlay studies where calmodulin labeled the 120-kDa band in the presence of Ca2+, while the 109-kDa band did not bind calmodulin. The effects of calmodulin and limited proteolysis on ATP-dependent accumulation of 45Ca2+ in isolated inside-out plasma membrane vesicles were studied, and kinetical analyses performed with respect to Ca2+ and ATP. Calmodulin increased the Vmax. for Ca2+ pumping 3-fold, and reduced Km for Ca2+ from 1.6 to 0.9 µM. The Km for ATP (11 µM) was not affected by calmodulin. The effects of limited proteolysis on the affinities for Ca2+ and ATP were similar to those obtained with calmodulin. Notably, however, limited proteolysis increased the Vmax. for Ca2+ pumping to a higher extent than calmodulin, indicating incomplete calmodulin activation, or removal of an additional inhibitory site by trypsin.  相似文献   

5.
The Ca2+ uptake of the mitochondria of guinea pig peritoneal macrophages was not stimulated by the addition of calmodulin. However, calmodulin antagonists, both phenotiazines and N-naphthalenesulfonamides, in low concentrations inhibited the Ca2+ uptake of the mitochondoria, as compared to the inhibition of the calmodulin-dependent stimulation of brain phosphodiesterase. These calmodulin antagonists appear to have severe side effects on active processes of the mitochondria and which are unrelated to the specific effect on calmodulin.  相似文献   

6.
The bovine heart calmodulin-dependent phosphodiesterase can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme's affinity for calmodulin. The phosphorylation of calmodulin-dependent phosphodiesterase is blocked by Ca2+ and calmodulin and reversed by the calmodulin-dependent phosphatase. The dephosphorylation is accompanied by an increase in the affinity of the phosphodiesterase for calmodulin. The CaM-dependent phosphodiesterase isozymes of heart and brain are regulated by calmodulin, but the affinity for calmodulin are different. Furthermore, the bovine heart CaM-dependent phosphodiesterase isozyme in stimulated at much lower Ca2+ concentration than the bovine brain isozymes. Results from this study suggest that the activity of this phosphodiesterase is precisely regulated by cross-talk between Ca2+ and cAMP signalling pathways.  相似文献   

7.
Photodynamic therapy (PDT), an inducer of oxidative stress, is used for treatment of cancer, including brain tumors. To study the mechanisms of photodynamic injury of neurons and glial cells (GC), we used a simple model object — isolated crayfish mechanoreceptor consisting of a single sensory neuron surrounded by a multilayered glial envelope. PDT caused inhibition and elimination of neuronal activity, impairment of intracellular organelles involved in the biosynthetic, bioenergetic, and transport processes and neuroglial interactions, necrosis of neurons and glial cells, and in glial apoptosis. PDT-induced death of a neuron and GC was mediated by intercellular molecular messengers and intracellular signaling cascades. PDT-induced inhibition and elimination of neuronal activity was associated with opening of mitochondrial permeability transition pores, Ca2+ release into cytosol, protein kinase C and NO synthase activities. Necrosis of neurons was mediated by protein kinases B/Akt, GSK-3β and mTOR, opening of mitochondrial permeability transition pores and Ca2+/calmodulin/CaMKII pathway. NO and GDNF reduced neuronal necrosis. Multiple signal pathways, such as phospholipase C/Ca2+, Ca2+/calmodulin/CaMKII, Ca2+/PKC, Akt/mTOR, MEK/p38, and protein kinase G mediated PDT-induced necrosis both in glial cells and in neurons. NOS/NO and neurotrophic factors NGF and GDNF protected glial cells and demonstrated antinecrotic activity. Glial apoptosis was reduced by neurotrophic factors NGF and GDNF, protein kinase C, and MAP kinase JNK. In contrast, mitochondrial permeability transition pores and phospholipase C, which mobilize intracellular Ca2+, NOS/NO/protein kinase G, proteins GSK-3β and mTOR, stimulated apoptosis of glial cells. The schemes of involvement of various inter- and intracellular signaling processes in the responses of neurons and GC to PDT are developed.  相似文献   

8.
Compensated influx and efflux of calcium ions maintain the constancy of Ca2+ concentration in cytoplasm of quiescent cells under variable external conditions. In cell plasma membrane there exist several types of Ca2+ channels with different properties, regulation mechanisms, and pharmacology. Using fluorescent Ca2+-sensitive probes, we have shown here that in T-lymphocytes under resting conditions, Ca2+ influx occurs through special constitutively active Ca2+ channels, permeable to Ni2+ and Mn2+. These channels differ from the receptor-activated SOC channels, from Ca2+ channels activated by arachidonic acid, and from calmidazolium-activated channels. Ca2+ influx rate in quiescent cells increases with a rise in temperature (Q10 =1.9). The strong dependence of the constitutively active channel activity on temperature coincided with the plasma membrane Ca2+-ATPase dependence, indicating that intracellular enzymes regulate the channel activity. To identify the constitutively active channel, we analyzed the effects of L-type Ca2+ channels, SOC channels, Ca2+-independent phospholipase A2, and calmodulin inhibitors. Of all inhibitors listed only dihydropyridine blocker of L-type voltage-dependent Ca2+ channels, isradipin, at a concentration of 1.5 μM completely suppressed calcium influx. However, the channels did not exhibit sensitivity to changes in membrane potential. Our observations testify to the existence of a new nonselective Ca2+ channel in T-lymphocyte plasma membrane and characterize the new channels pharmacologically. The results obtained are important for understanding the regulation mechanisms of Ca2+ channels in plasma membrane of non-excitable cells.  相似文献   

9.
TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.  相似文献   

10.
Published studies of the Ca2+-pump ATPase of the human erythrocyte membrane record a variety of patterns of activation by Ca2+ and calmodulin and also suggest that activation by Ca2+-calmodulin is slow rather than immediate. We have re-analysed these points in various types of human erythrocyte membrane preparation of widely different permeability characteristics, both in the intact state and after being rendered fully permeable by saponin. The various membrane preparations initially showed very different patterns of activation, but when permeabilised with saponin they all exhibited identical characteristics: these included highly cooperative activation by Ca2+ with maximum activity at ~ 1 μM-Ca2+ and high sensitivity to calmodulin. Activation of Ca2+-ATPase by Ca2+-calmodulin in freely permeable ghosts was immediate. We therefore conclude that the Ca2+-pump ATPase exhibits high sensitivity to Ca2+ and calmodulin and responds rapidly to Ca2+-calmodulin. Apparent evidence to the contrary seems likely to have been a result of misinter-pretation of data derived from studies of partially sealed erythrocyte ghosts in which the added activators, Ca2+ and calmodulin, did not have free access to the appropriate sites on the ATPase.  相似文献   

11.
Calmodulin   总被引:2,自引:0,他引:2  
Summary Ca2+ as an important cellular regulator has long been recognized. Calmodulin is unique among several proteins considered to be Ca2+ receptors in its ubiquitous distribution in eukaryotic cells and in its multiple effects through interaction with different enzymes and proteins. Apparently, calmodulin is the major Ca2+ receptor in most of these cells and most of metabolic active Ca2+ exists as a Ca2+-calmodulin complex.The importance of calmodulin as a Ca2+ mediator is also indicated by its role as the Ca2+-sensor in the regulation of Ca2+ pump which effectively maintains a low steady level of intracellular free Ca2+. The participation of calmodulin in the regulation of intracellular Ca2+ level suggests the desire for the cell to maintain adequate steady levels of metabolic active Ca2+. A low calmodulin concentration may in effect slow down the Ca2+ pump allowing a higher concentration of intracellular free Ca2+, but may also require higher Ca2+ threshold for Cat+ effects. A prominent difference in calmodulin contents of different eukaryotic cells has been noted and this difference may reflect the difference in the extents and the types of Ca2+-mediated reactions that operate in the cells. It is also possible that calmodulin concentration may fluctuate in response to different metabolic conditions. The evident for such possibility has been provided by the observations that cAMP-dependent protein kinase and ATP together with cAMP or neurotransmitters that stimulate cAMP synthesis cause the release of calmodulin from synaptic membranes (139, 140). However, the cytosolic calmodulin increased as the result of its release from the membranes is unlikely to be sufficient for eliciting calmodulin-mediated Ca2+ effects without a concomitant significant increase of intracellular Ca2+. The calmodulin release, in effect, may decrease the Ca2+ threshold of these effects.The manifestation of calmodulin-mediated Ca2+ effects in a particular type of cells appears determined mainly by the calmodulin-regulated enzymes existing in the cells. Within the same cells, however, the particular species of Ca2+-calmodulin complex serving as the active calmodulin, the affinity of the enzyme for the active calmodulin and the localization of the enzyme in the cells may determine the circumstance under which particular reactions are expressed.During the past years, substantial progress has been made in understanding calmodulin in terms of primary structure and molecular properties and in discovering many Ca2+-dependent, calmodulin-regulated enzymes and cellular activities. Our understanding of calmodulin and its relation to the wide range of Ca2+-dependent enzymes and activities has provided a framework for comprehending Ca2+ functions in the cells at the molecular level. Further works, however, are required to unravel fully the detailed mechanisms and properties that govern the calmodulin-enzyme interactions and to narrow further the gaps between Ca2+-elicited cellular expressions and the molecular events that lead to such expressions.  相似文献   

12.
Synaptotagmins (Syt) are a large family of proteins that regulate membrane traffic in neurons and other cell types. One isoform that has received considerable attention is SYT4, with apparently contradictory reports concerning the function of this isoform in fruit flies and mice. SYT4 was reported to function as a negative regulator of neurotrophin secretion in mouse neurons and as a positive regulator of secretion of a yet to be identified growth factor from muscle cells in flies. Here, we have directly compared the biochemical and functional properties of rat and fly SYT4. We report that rat SYT4 inhibited SNARE-catalyzed membrane fusion in both the absence and presence of Ca2+. In marked contrast, fly SYT4 stimulated SNARE-mediated membrane fusion in response to Ca2+. Analysis of chimeric molecules, isolated C2 domains, and point mutants revealed that the C2B domain of the fly protein senses Ca2+ and is sufficient to stimulate fusion. Rat SYT4 was able to stimulate fusion in response to Ca2+ when the conserved Asp-to-Ser Ca2+ ligand substitution in its C2A domain was reversed. In summary, rat SYT4 serves as an inhibitory isoform, whereas fly SYT4 is a bona fide Ca2+ sensor capable of coupling Ca2+ to membrane fusion.  相似文献   

13.
In cardiac and skeletal myocytes, and in most neurons, the opening of voltage‐gated Na+ channels (NaV channels) triggers action potentials, a process that is regulated via the interactions of the channels’ intercellular C‐termini with auxiliary proteins and/or Ca2+. The molecular and structural details for how Ca2+ and/or auxiliary proteins modulate NaV channel function, however, have eluded a concise mechanistic explanation and details have been shrouded for the last decade behind controversy about whether Ca2+ acts directly upon the NaV channel or through interacting proteins, such as the Ca2+ binding protein calmodulin (CaM). Here, we review recent advances in defining the structure of NaV intracellular C‐termini and associated proteins such as CaM or fibroblast growth factor homologous factors (FHFs) to reveal new insights into how Ca2+ affects NaV function, and how altered Ca2+‐dependent or FHF‐mediated regulation of NaV channels is perturbed in various disease states through mutations that disrupt CaM or FHF interaction.  相似文献   

14.
15.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

16.
Transecting the axons of neurons in the adult superior cervical ganglion (SCG; axotomy) results in the survival of most postganglionic neurons, the influx of circulating monocytes, proliferation of satellite cells, and changes in neuronal gene expression. In contrast, transecting the afferent input to the SCG (decentralization) results in nerve terminal degeneration and elicits a different pattern of gene expression. We examined the effects of decentralization on macrophages in the SCG and compared the results to those previously obtained after axotomy. Monoclonal antibodies were used to identify infiltrating (ED1+) and resident (ED2+) macrophages, as well as macrophages expressing MHC class II molecules (OX6+). Normal ganglia contained ED2+ cells and OX6+ cells, but few infiltrating macrophages. After decentralization, the number of infiltrating ED1+ cells increased in the SCG to a density about twofold greater than that previously seen after axotomy. Both the densities of ED2+ and OX6+ cells were essentially unchanged after decentralization, though a large increase in OX6+ cells occurred after axotomy. Proliferation among the ganglion's total non‐neuronal cell population was examined and found to increase about twofold after decentralization and about fourfold after axotomy. Double‐labeling experiments indicated that some of these proliferating cells were macrophages. After both surgical procedures, the percentage of proliferating ED2+ macrophages increased, while neither procedure altered the proliferation of ED1+ macrophages. Axotomy, though not decentralization, increased the proliferation of OX6+ cells. Future studies must address what role(s) infiltrating and/or resident macrophages play in regions of decentralized and axotomized neurons and, if both are involved, whether they play distinct roles. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 68–79, 2002  相似文献   

17.
Two cell lines transformed with temperature sensitive retroviruses were examined for: their ability to grow in low Ca2+ medium, their calmodulin levels and changes in calmodulin acceptor proteins. Both cell lines grow in low Ca2+ medium at the permissive temperature 34°C while both lines did not replicate at the non-permissive temperature 39°C. The NRKLA23 cells have nearly twice as much calmodulin at the permissive temperature than they do at the non-permissive temperature while the 6M2 cells have an equal amount of calmodulin at both temperatures. Both cell lines exhibit changes in the calmodulin acceptor proteins going from the permissive to the non-permissive temperature. We suspect that the changes in the calmodulin acceptor proteins may be involved in the altered Ca2+-sensitivity of growth in the cells going from the permissive to non-permissive temperature.  相似文献   

18.
Calcium uptake by washed boar sperm suspensions is markedly stimulated by the calmodulin antagonists trifluoperazine and calmidazolium. Both 45Ca2+ uptake and net Ca2+ uptake are increased by these drugs. Drug stimulated Ca2+ uptake is blocked by verapamil (1 mM), by ruthenium red (25 μM) and by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Calmodulin antagonists do not slow ATP-dependent Ca2+ extrusion from plasma membrane vesicles, and they do not inhibit plasma membrane Ca2+-ATPase. It is proposed that calmodulin is involved in the control of Ca2+ entry in boar spermatozoa. Most entering Ca2+ in uncapacitated spermatozoa is sequestered by mitochondria or rapidly extruded by plasma membrane pumps. In contrast to the uptake mechanism, ATP-dependent Ca2+ extrusion does not appear to be regulated by calmodulin.  相似文献   

19.
The sarcolemmal membranes obtained from rat heart by sucrose-density gradient method were found to exhibit Ca2+ stimulated Mg2+ dependent ATPase and ATP-dependent Ca2+ binding activities. The Ca2+ stimulated ATPase activity was increased by calmodulin; maximal effect was seen at 1 to 5 μg/ml concentrations of calmodulin. The observed activation of the enzyme was associated with an increase in Vmax value from 3.45 to 5.26 μmol Pi/mg protein/hr and a decrease in Ka value from 2.78 to 0.84 μM Ca2+. Calmodulin was also found to increase ATP-dependent Ca2+ binding by 1.6 to 2.2 fold. These results suggest that the activity of Ca2+ pump mechanism in heart sarcolemma is regulated by calmodulin.  相似文献   

20.
Ca2+是植物体内重要的第二信使,当植物受到各种环境刺激时,细胞内的Ca2+浓度瞬间产生变化,并被Ca2+信号效应器识别,通过与下游的靶蛋白结合并调节其活性,参与调控植物各种生理活动。钙调素结合蛋白以依赖Ca2+或不依赖Ca2+的方式结合钙调素。对目前已经鉴定的植物钙调素结合蛋白结构特点进行了综述,并着重介绍了钙调素结合蛋白是如何参与调节植物对生物胁迫和非生物胁迫的反应,为提高作物抗病抗逆能力研究提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号