首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An investigation of cellulose degradation by the nonruminal, cellulolytic, mesophilic bacterium Clostridium cellulolyticum was performed in cellulose-fed chemostat cultures with ammonium as the growth-limiting nutrient. At any dilution rate (D), acetate was always the main product of the catabolism, with a yield of product from substrate ranging between 37.7 and 51.5 g per mol of hexose equivalent fermented and an acetate/ethanol ratio always higher than 1. As D rose, the acetyl coenzyme A was rerouted in favor of ethanol pathways, and ethanol production could represent up to 17.7% of the carbon consumed. Lactate was significantly produced, but with increasing D, the specific lactate production rate declined, as did the specific rate of production of extracellular pyruvate. The proportion of the original carbon directed towards phosphoglucomutase remained constant, and the carbon surplus was balanced mainly by exopolysaccharide and glycogen biosyntheses at high D values, while cellodextrin excretion occurred mainly at lower ones. With increasing D, the specific rate of carbon flowing down catabolites increased as well, but when expressed as a percentage of carbon it declined, while the percentage of carbon directed through biosynthesis pathways was enhanced. The maximum growth and energetic yields were lower than those obtained in cellulose-limited chemostats and were related to an uncoupling between catabolism and anabolism leading to an excess of energy. Compared to growth on cellobiose in ammonium-limited chemostats (E. Guedon, M. Desvaux, and H. Petitdemange, J. Bacteriol. 182:2010-2017, 2000), (i) a specific consumption rate of carbon of as high as 26.72 mmol of hexose equivalent g of cells(-1) x h(-1) could not be reached and (ii) the proportions of carbon directed towards cellodextrin, glycogen, and exopolysaccharide pathways were not as high as first determined on cellobiose. While the use of cellobiose allows highlighting of metabolic limitation and regulation of C. cellulolyticum under ammonium-limited conditions, some of these events should then rather be interpreted as distortions of the metabolism. Growth of cellulolytic bacteria on easily available carbon and nitrogen sources represents conditions far different from those of the natural lignocellulosic compounds.  相似文献   

2.
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h−1, biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose liter−1 the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose liter−1, respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose liter−1. Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119–130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and qNADH produced/qNADH used ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327–335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells−1 h−1 could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells−1 h−1; (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.  相似文献   

3.
The metabolic characteristics of Clostridium cellulolyticum, a mesophilic cellulolytic nonruminal bacterium, were investigated and characterized kinetically for the fermentation of cellulose by using chemostat culture analysis. Since with C. cellulolyticum (i) the ATP/ADP ratio is lower than 1, (ii) the production of lactate at low specific growth rate (mu) is low, and (iii) there is a decrease of the NADH/NAD(+) ratio and q(NADH produced)/ q(NADH used) ratio as the dilution rate (D) increases in carbon-limited conditions, the chemostats used were cellulose-limited continuously fed cultures. Under all conditions, ethanol and acetate were the main end products of catabolism. There was no shift from an acetate-ethanol fermentation to a lactate-ethanol fermentation as previously observed on cellobiose as mu increased (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, J. Bacteriol. 181:3262-3269, 1999). The acetate/ethanol ratio was always higher than 1 but decreased with D. On cellulose, glucose 6-phosphate and glucose 1-phosphate are important branch points since the longer the soluble beta-glucan uptake is, the more glucose 1-phosphate will be generated. The proportion of carbon flowing toward phosphoglucomutase remained constant (around 59.0%), while the carbon surplus was dissipated through exopolysaccharide and glycogen synthesis. The percentage of carbon metabolized via pyruvate-ferredoxin oxidoreductase decreased with D. Acetyl coenzyme A was mainly directed toward the acetate formation pathway, which represented a minimum of 27.1% of the carbon substrate. Yet the proportion of carbon directed through biosynthesis (i.e., biomass, extracellular proteins, and free amino acids) and ethanol increased with D, reaching 27.3 and 16.8%, respectively, at 0.083 h(-1). Lactate and extracellular pyruvate remained low, representing up to 1.5 and 0.2%, respectively, of the original carbon uptake. The true growth yield obtained on cellulose was higher, [50.5 g of cells (mol of hexose eq)(-1)] than on cellobiose, a soluble cellodextrin [36.2 g of cells (mol of hexose eq)(-1)]. The rate of cellulose utilization depended on the solid retention time and was first order, with a rate constant of 0.05 h(-1). Compared to cellobiose, substrate hydrolysis by cellulosome when bacteria are grown on cellulose fibers introduces an extra means for regulation of the entering carbon flow. This led to a lower mu, and so metabolism was not as distorted as previously observed with a soluble substrate. From these results, C. cellulolyticum appeared well adapted and even restricted to a cellulolytic lifestyle.  相似文献   

4.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

5.
Anaerobic bacteria assimilate cellodextrins from plant biomass by using a phosphorolytic pathway to generate glucose intermediates for growth. The yeast Saccharomyces cerevisiae can also be engineered to ferment cellobiose to ethanol using a cellodextrin transporter and a phosphorolytic pathway. However, strains with an intracellular cellobiose phosphorylase initially fermented cellobiose slowly relative to a strain employing an intracellular β-glucosidase. Fermentations by the phosphorolytic strains were greatly improved by using cellodextrin transporters with elevated rates of cellobiose transport. Furthermore under stress conditions, these phosphorolytic strains had higher biomass and ethanol yields compared to hydrolytic strains. These observations suggest that, although cellobiose phosphorolysis has energetic advantages, phosphorolytic strains are limited by the thermodynamics of cellobiose phosphorolysis (ΔG°=+3.6 kJ mol−1). A thermodynamic “push” from the reaction immediately upstream (transport) is therefore likely to be necessary to achieve high fermentation rates and energetic benefits of phosphorolysis pathways in engineered S. cerevisiae.  相似文献   

6.
7.
The hydrolysis and fermentation of insoluble cellulose were investigated using continuous cultures of Clostridium cellulolyticum with increasing amounts of carbon substrate. At a dilution rate (D) of 0.048 h(-1), biomass formation increased proportionately to the cellulose concentration provided by the feed reservoir, but at and above 7.6 g of cellulose x liter(-1) the cell density at steady state leveled off. The percentage of cellulose degradation declined from 32.3 to 8.3 with 1.9 and 27.0 g of cellulose x liter(-1), respectively, while cellodextrin accumulation rose and represented up to 4.0% of the original carbon consumed. The shift from cellulose-limited to cellulose-sufficient conditions was accompanied by an increase of both the acetate/ethanol ratio and lactate biosynthesis. A kinetics study of C. cellulolyticum metabolism in cellulose saturation was performed by varying D with 18.1 g of cellulose x liter(-1). Compared to cellulose limitation (M. Desvaux, E. Guedon, and H. Petitdemange, J. Bacteriol. 183:119-130, 2001), in cellulose-sufficient continuous culture (i) the ATP/ADP, NADH/NAD+, and q(NADH produced)/q(NADH used) ratios were higher and were related to a more active catabolism, (ii) the acetate/ethanol ratio increased while the lactate production decreased as D rose, and (iii) the maximum growth yield (Y(max)X/S) (40.6 g of biomass per mol of hexose equivalent) and the maximum energetic yield (Y(max)ATP) (19.4 g of biomass per mol of ATP) were lowered. C. cellulolyticum was then able to regulate and optimize carbon metabolism under cellulose-saturated conditions. However, the facts that some catabolized hexose and hence ATP were no longer associated with biomass production with a cellulose excess and that concomitantly lactate production and pyruvate leakage rose suggest the accumulation of an intracellular inhibitory compound(s), which could further explain the establishment of steady-state continuous cultures under conditions of excesses of all nutrients. The following differences were found between growth on cellulose in this study and growth under cellobiose-sufficient conditions (E. Guedon, S. Payot, M. Desvaux, and H. Petitdemange, Biotechnol. Bioeng. 67:327-335, 2000): (i) while with cellobiose, a carbon flow into the cell of as high as 5.14 mmol of hexose equivalent g of cells(-1) x h(-1) could be reached, the maximum entering carbon flow obtained here on cellulose was 2.91 mmol of hexose equivalent g of cells(-1) x h(-1); (ii) while the NADH/NAD+ ratio could reach 1.51 on cellobiose, it was always lower than 1 on cellulose; and (iii) while a high proportion of cellobiose was directed towards exopolysaccharide, extracellular protein, and free amino acid excretions, these overflows were more limited under cellulose-excess conditions. Such differences were related to the carbon consumption rate, which was higher on cellobiose than on cellulose.  相似文献   

8.
9.
Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates to support bacterial growth. As most cellulolytic bacteria, C. cellulolyticum was initially characterised by limited carbon consumption and subsequent limited growth in comparison to other saccharolytic clostridia. The first metabolic studies performed in batch cultures suggested nutrient(s) limitation and/or by-product(s) inhibition as the reasons for this limited growth. In most recent investigations using chemostat cultures, metabolic flux analysis suggests a self-intoxication of bacterial metabolism resulting from an inefficiently regulated carbon flow. The investigation of C. cellulolyticum physiology with cellobiose, as a model of soluble cellodextrin, and with pure cellulose, as a carbon source more closely related to lignocellulosic compounds, strengthen the idea of a bacterium particularly well adapted, and even restricted, to a cellulolytic lifestyle. The metabolic flux analysis from continuous cultures revealed that (i) in comparison to cellobiose, the cellulose hydrolysis by the cellulosome introduces an extra regulation of entering carbon flow resulting in globally lower metabolic fluxes on cellulose than on cellobiose, (ii) the glucose 1-phosphate/glucose 6-phosphate branch point controls the carbon flow directed towards glycolysis and dissipates carbon excess towards the formation of cellodextrins, glycogen and exopolysaccharides, (iii) the pyruvate/acetyl-CoA metabolic node is essential to the regulation of electronic and energetic fluxes. This in-depth analysis of C. cellulolyticum metabolism has permitted the first attempt to engineer metabolically a cellulolytic microorganism.  相似文献   

10.
When Clostridium cellulolyticum was grown with cellulose MN300 as the substrate, the rates of growth and metabolite production were found to be lower than those observed with soluble sugars as the substrate. At low cellulose concentrations, the growth yields were equal to those obtained with cellobiose. The main fermentation products from cellulose and soluble sugars were the same. Up to 15 mM of consumed hexose, a change in the metabolic pathway favoring lactate production similar to that observed with soluble sugars was found to occur concomitantly with a decrease in molar growth yield. With cellulose concentrations above 5 g/liter, accumulation of soluble sugars occurred once growth had ceased. Glucose accounted for 30% of these sugars. A kinetic analysis of cellulose solubilization revealed that cellulolysis by C. cellulolyticum involved three stages whatever cellulose concentration was used. Analysis of these kinetics showed three consecutive enzymatic activity levels having the same Km (0.8 g of cellulose per liter, i.e., 5 mM hexose equivalent) but decreasing values of Vmax. The hypothesis is suggested that each step corresponds to differences in cellulose structure.  相似文献   

11.
Summary The cellulolytic enzymes of various strains of the brown-rot fungus Coniophora puteana were studied. The organism was grown in an air-lift fermentor in mineral medium containing glucose, cellobiose or amorphous cellulose. The specific growth rate varied between 0.082 and 0.062 h–1. On amorphous cellulose as sole carbon source, the organism secreted various proteins, some of which were characterized. The mixture contained inter alia four endocellulases, two exo-cellobiohydrolases and a cellobiose dehydrogenase. Three endocellulases (named type I) were active on soluble cellulose derivatives but inactive on p-nitrophenyllactoside (p-NPL), whereas a fourth endocellulase (named type II) was active on both. The two exo-cellobiohydrolases released cellobiose from amorphous cellulose; they were inactive on soluble cellulose derivatives but hydrolyzed p-NPL with strong cellobiose inhibition. A cellobiose dehydrogenase having spectral characteristics compatible with a flavo b-cytochrome was also identified. Neither the exo-cellobiohydrolase nor the type II endocellulase were secreted during growth on cellobiose whereas type I endocellulases and cellobiose dehydrogenase were formed at a reduced rate. No formation of cellulolytic enzymes was observed during growth on glucose alone. Correspondence to: G. Canevascini  相似文献   

12.
Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.  相似文献   

13.
The nutritional and physiological factors affecting sporulation of Clostridium cellulolyticum were studied using steady-state continuous cultures grown in both complex and synthetic media. Under cellobiose limitation, the probability that cells will sporulate appears to be directly related to the growth rate. In complex medium, the highest percentage of sporulation was 20% at a dilution rate of 0.015 h−1 whereas in synthetic medium it was 10% at 0.035 h−1. In both media, when the dilution rate was either higher or lower the percentage of sporulation decreased by between 2% and 4%. At low dilution rates, endospore formation was repressed under cellobiose-sufficient concentrations, suggesting catabolite repression by cellobiose. Furthermore, the concentration of ammonium was important in determining the percentage of sporulation, as ammonium limitation induced extensive sporulation at low growth rates even in an excess of cellobiose. The sporulation process is not triggered when cells are cellobiose-exhausted both in complex and synthetic media. These data suggest that, in C. cellulolyticum, an exogenous supply of carbon is required throughout the sporulation process. In the experimental conditions used in this work, no relationship between glycogen accumulation or glycogen mobilization and endospore formation was detected in C. cellulolyticum. Received: 15 April 1999 / Received revision: 15 June 1999 / Accepted: 22 June 1999  相似文献   

14.
An alternative consolidated bioprocessing approach is the use of a co-culture containing cellulolytic and solventogenic clostridia. It has been demonstrated that the rate of cellulose utilization in the co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum is improved compared to the mono-culture of C. cellulolyticum, suggesting the presence of syntrophy between these two species. However, the metabolic interactions in the co-culture are not well understood. To understand the metabolic interactions in the co-culture, we developed a genome-scale metabolic model of C. cellulolyticum comprising of 431 genes, 621 reactions, and 603 metabolites. The C. cellulolyticum model can successfully predict the chemostat growth and byproduct secretion with cellulose as the substrate. However, a growth arrest phenomenon, which occurs in batch cultures of C. cellulolyticum at cellulose concentrations higher than 6.7 g/L, cannot be predicted by dynamic flux balance analysis due to the lack of understanding of the underlying mechanism. These genome-scale metabolic models of the pure cultures have also been integrated using a community modeling framework to develop a dynamic model of metabolic interactions in the co-culture. Co-culture simulations suggest that cellobiose inhibition cannot be the main factor that is responsible for improved cellulose utilization relative to mono-culture of C. cellulolyticum.  相似文献   

15.
Clostridium thermocellum is an anaerobic thermophilic bacterium which degrades cellulose and ferments the resulting glucose, cellobiose, and cellodextrins predominantly to ethanol. However, relatively little information was available on carbohydrate uptake by this bacterium. Washed cells internalized intact oligomers as large as cellopentaose. Since cellobiose and cellodextrin phosphorylase activities were detected in the cytosol and were not associated with cell membranes, phosphorylation of carbohydrates occurred intracellularly. Kinetic studies indicated that cellobiose and larger cellodextrins were taken up by a common uptake system while glucose entered via a separate mechanism. When cells were treated with metabolic inhibitors including iodoacetate and arsenate, the uptake of radiolabeled glucose or cellobiose was reduced by as much as 90%, and this reduction was associated with a 95% decline in intracellular ATP content. A combination of the ionophores nigericin and valinomycin abolished the proton-motive force but only slightly decreased transport and ATP. These results suggested that the two modes of carbohydrate transport in C. thermocellum were ATP dependent. This work is the first demonstration of cellodextrin transport by a cellulolytic bacterium.  相似文献   

16.
Growth of Clostridium thermocellum in batch cultures was studied over a broad range of cellobiose concentrations. Cultures displayed important differences in their substrate metabolism as determined by the end product yields. Bacterial growth was severely limited when the initial cellobiose concentration was 0.2 (wt/vol), was maximal at substrate concentrations between 0.5 and 2.0%, and did not occur at 5.0% cellobiose. Ethanol accumulated maximally (38.3 μmol/109 cells) in cultures with an initial cellobiose concentration of 0.8%, whereas cultures in 2.0% cellobiose accumulated only 17.3 μmol, and substrate-limited cultures (0.2% cellobiose) accumulated little, if any, ethanol beyond that initially detected (8.3 μmol/109 cells). In a medium with 0.8% cellobiose, ethanol was produced at a constant rate of approximately 1.1 μmol/109 cells per h from late-logarithmic phase (16 h) of growth well into stationary phase (44 h). When ethanol was added exogenously at levels more than twice the maximum produced by the cultures themselves (0.5% [vol/vol]), neither the extent of growth (maximum Klett units, 150) nor the amounts of ethanol produced (~0.17%) by the culture was affected. The ratio of ethanol to acetate was highest (2.8) when cells were grown in 0.8% cellobiose and lowest (1.2) when cells were grown in 0.2% cellobiose.  相似文献   

17.
The fermentation of cellulose by a rumen anaerobic fungus in the presence of Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri strain 227 resulted in the formation of 2 mol each of methane and carbon dioxide per mol of hexose fermented. Coculture of the fungus with either Methanobrevibacter sp. or M. barkeri produced 0.6 and 1.3 mol of methane per mol of hexose, respectively. Acetate, formate, ethanol, hydrogen, and lactate, which are major end products of cellulose fermentation by the fungus alone, were either absent or present in very low quantities at the end of the triculture fermentation (≤0.08 mol per mol of hexose fermented). During the time course of cellulose fermentation by the triculture, hydrogen was not detected (<1 × 10−5 atm; <0.001 kPa) and only acetate exhibited transitory accumulation; the maximum was equivalent to 1.4 mol per mol of hexose at 6 days which was higher than the total acetate yield of 0.73 in the fungus monoculture. The effect of methanogens is interpreted as a shift in the flow of electrons away from the formation of electron sink products lactate and ethanol to methane via hydrogen, favoring an increase in acetate, which is in turn converted to methane and carbon dioxide by M. barkeri. The maximum rate of cellulose degradation in the triculture (3 mg/ml per day) was faster than previously reported for bacterial cocultures and within 16 days degradation was complete. The triculture was used successfully also in the production of methane from cellulose in the plant fibrous materials, sisal (fiber from leaves of Agave sisalona L.) and barley straw leaf.  相似文献   

18.
Cellulolytic clostridia have evolved to catabolize lignocellulosic materials at a seasonal biorhythm, so their biotechnological exploitation requires genetic improvements. As high carbon flux leads to pyruvate accumulation, which is responsible for the cessation of growth of Clostridium cellulolyticum, this accumulation is decreased by heterologous expression of pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. In comparison with that of the wild strain, growth of the recombinant strain at the same specific rate but for 145 h instead of 80 h led to a 150% increase in cellulose consumption and a 180% increase in cell dry weight. The fermentation pattern was shifted significantly: lactate production decreased by 48%, whereas the concentrations of acetate and ethanol increased by 93 and 53%, respectively. This study demonstrates that the fermentation of cellulose, the most abundant and renewable polymer on earth, can be greatly improved by using genetically engineered C. cellulolyticum.  相似文献   

19.
Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g).  相似文献   

20.
Saccharomyces cerevisiae cannot utilize cellobiose, but this yeast can be engineered to ferment cellobiose by introducing both cellodextrin transporter (cdt-1) and intracellular β-glucosidase (gh1-1) genes from Neurospora crassa. Here, we report that an engineered S. cerevisiae strain expressing the putative hexose transporter gene HXT2.4 from Scheffersomyces stipitis and gh1-1 can also ferment cellobiose. This result suggests that HXT2.4p may function as a cellobiose transporter when HXT2.4 is overexpressed in S. cerevisiae. However, cellobiose fermentation by the engineered strain expressing HXT2.4 and gh1-1 was much slower and less efficient than that by an engineered strain that initially expressed cdt-1 and gh1-1. The rate of cellobiose fermentation by the HXT2.4-expressing strain increased drastically after serial subcultures on cellobiose. Sequencing and retransformation of the isolated plasmids from a single colony of the fast cellobiose-fermenting culture led to the identification of a mutation (A291D) in HXT2.4 that is responsible for improved cellobiose fermentation by the evolved S. cerevisiae strain. Substitutions for alanine (A291) of negatively charged amino acids (A291E and A291D) or positively charged amino acids (A291K and A291R) significantly improved cellobiose fermentation. The mutant HXT2.4(A291D) exhibited 1.5-fold higher Km and 4-fold higher Vmax values than those from wild-type HXT2.4, whereas the expression levels were the same. These results suggest that the kinetic properties of wild-type HXT2.4 expressed in S. cerevisiae are suboptimal, and mutations of A291 into bulky charged amino acids might transform HXT2.4p into an efficient transporter, enabling rapid cellobiose fermentation by engineered S. cerevisiae strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号