首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related adjuvants and delivery systems, but rather is an attempt to highlight many of the currently available approaches in immunopotentiation of mucosal vaccines.  相似文献   

2.
Yue Y  Xu W  Xiong S 《DNA and cell biology》2012,31(4):479-488
Induction of potent mucosal immune response is a goal of current vaccine strategies against mucus-infectious pathogens such as Coxsackievirus B3 type (CVB3). We previously showed that administration of lymphotactin (LTN) as an adjuvant could enhance the specific immune responses against a mucosal gene vaccine, chitosan-pVP1, against CVB3. To optimize the coadministration mode of the mucosal adjuvant, we compared the mucosal immune responses induced by chitosan-DNA vaccine with different combinations of the target VP1 antigen gene and the adjuvant LTN gene. The two genes were either cloned in separate vectors or coexpressed as a fusion or bicistron protein in the same vector before encapsulation in chitosan nanoparticles. Four doses of various adjuvant-combined chitosan-DNA were intranasally administrated to mice before challenge with CVB3. The results indicated that chitosan-formulated pVP1-LTN fusion plasmid exhibited very weak improvement of CVB3-specific immune responses. Although the bicistronic coexpression of LTN with VP1 was expected to be powerful, this combination had enhanced effects on serum IgG and systemic T cell immune responses, but not on mucosal T cell immunity. Coimmunization with VP1 and LTN as separate chitosan-DNA formulation remarkably enhanced antibody and T cell immune responses both in systemic and mucosal immune compartments, leading to the most desirable preventive effect on viral myocarditis. Taken together, how the adjuvant is combined with the target antigen has a strong influence on the mucosal immune responses induced by mucosal DNA vaccines.  相似文献   

3.
目的:用HIV-1复制型DNA疫苗和非复制型重组痘苗病毒疫苗(rNTV-C)进行单独免疫和联合免疫的研究(2种疫苗分别包含HIV-1 B’/C亚型的gp160、gag-pol、rev-tat-nef等6种基因),以了解这2种新型HIV疫苗单独免疫及联合免疫的效果,并为临床免疫方案的制定提供实验依据。方法:将HIV-1 DNA疫苗和rNTV-C疫苗免疫BALB/c小鼠,设计rNTV-C单独免疫组、DNA单独免疫组,以及DNA初免、rNTV-C加强的联合免疫组,并设计不同免疫途径和不同剂量的各种组合。用IFN-γELISPOT检测各组的细胞免疫效果,用统计学方法分析比较各组细胞免疫效果的差异。结果:DNA疫苗和rNTV-C疫苗单独免疫时,二者都能诱发针对各抗原的特异性免疫反应;联合免疫能够诱发比DNA或rNTV-C单独免疫都强的特异性细胞免疫反应。统计分析显示,2种疫苗采用肌肉注射途径的免疫效果显著高于皮内注射,1μg和5μg DNA疫苗的免疫效果差异不显著,而1×108 PFU的rNTV-C比2×107PFU的免疫效果要强。结论:联合免疫策略能够显著增强HIV-1疫苗各抗原的免疫原性,通过对2种HIV-1疫苗单独免疫及二者联合免疫的细胞免疫反应的分析比较,确定了较好的免疫方案,为疫苗临床前免疫效果评价和临床方案的制定提供了实验依据。  相似文献   

4.
为了筛选和确定用于检测表达HIV-1 B’/C亚型病毒6种抗原(gp160、gag、polr、evt、at和nef)的艾滋病疫苗免疫小鼠后H-2d限制的特异性T细胞表位,本研究使用表达上述6种抗原的复制型DNA疫苗和非复制型重组痘苗病毒疫苗联合免疫BALB/c小鼠,通过矩阵设计将HIV-1 B(C)亚型6种相应抗原全序列肽库分别混合成肽池,使用肽池对免疫小鼠进行IFN-γELISPOT检测,根据检测结果确定肽库中特异反应的优势表位肽。结果显示:筛选到七条针对Gag的特异表位肽,其中有5条与文献报道相同,另2条为新表位肽;筛选到3条针对Pol蛋白特异表位肽,其中一条为新表位肽;筛选到2条针对gp160特异表位肽,其中一条为新表位肽;在Nef肽库中筛选到一条新的表位肽;从Tat肽库中筛选到3条表位肽,这三条肽在肽库中是连续的序列,都包含(或部分包含)网上公布的表位序列;在Rev肽库中没有筛选到能够产生阳性反应的特异性表位肽。本研究使用IFN-γELISPOT方法筛选和确定了可用于检测表达HIV-1 B’/C亚型病毒6种抗原(gp160、gag、pol、revt、at和nef)的艾滋病疫苗免疫小鼠后H-2d限制的特异性T细胞表位。  相似文献   

5.
Live recombinant vectors entered the AIDS vaccine field with the realization that live attenuated HIV vaccines posed too great a safety risk, and that subunit vaccines elicited antibodies which lacked the breadth or potency needed to induce sterilizing immunity. Vectored vaccines provided a means to bring the cellular arm of the immune system into play by mimicking natural viral infection. By delivering antigens within host cells, processing and presentation could occur for induction of cellular immune responses. This recombinant vector approach, either alone or combined with other strategies, has produced impressive results. Recombinants have been generated from DNA and RNA viruses and bacteria. With few exceptions, each vector poses some risk, yet each possesses unique features that make it attractive. In addition to safety, key considerations in vector selection have included previous success as a vaccine against the wild-type agent or other pathogens; ability to induce potent, persistent immune responses; ability to target mucosal inductive sites and antigen presenting cells; lack of integration into the host genome; presence of pre-existing immunity in people; ease of mucosal administration; cloning capacity; ease of engineering and production; and stability of the final product. Here we up-date the status of several live recombinant vectors that have shown good potential in pre-clinical studies. Some have progressed to human clinical trials, and others will shortly. The abundance of vectors, coupled with the complexity arising from use of combination regimens with other vaccine types and heterologous vectors, will necessitate selection of the most promising candidates for large-scale efficacy trials in people. The sooner comparative studies can be designed and implemented in which live recombinant vectors containing the same inserted genes are evaluated head-to-head, the closer we will be to an eventual vaccine.  相似文献   

6.
A candidate live-virus vaccine strain of Venezuelan equine encephalitis virus (VEE) was configured as a replication-competent vector for in vivo expression of heterologous immunogens. Three features of VEE recommend it for use as a vaccine vector. (i) Most human and animal populations are not already immune to VEE, so preexisting immunity to the vector would not limit expression of the heterologous antigen. (ii) VEE replicates first in local lymphoid tissue, a site favoring the induction of an effective immune response. (iii) Parenteral immunization of rodents and humans with live, attenuated VEE vaccines protects against mucosal challenge, suggesting that VEE vaccine vectors might be used successfully to protect against mucosal pathogens. Upon subcutaneous (s.c.) inoculation into the footpad of mice, a VEE vector containing the complete influenza virus hemagglutinin (HA) gene expressed HA in the draining lymph node and induced anti-HA immunoglobulin G (IgG) and IgA serum antibodies, the levels of which could be increased by s.c. booster inoculation. When immunized mice were challenged intranasally with a virulent strain of influenza virus, replication of challenge virus in their lungs was restricted, and they were completely protected from signs of disease. Significant reduction of influenza virus replication in the nasal epithelia of HA vector-immunized mice suggested an effective immunity at the mucosal surface. VEE vaccine vectors represent an alternative vaccination strategy when killed or subunit vaccines are ineffective or when the use of a live attenuated vaccine might be unsafe.  相似文献   

7.
Replication-defective adenovirus (ADV) vectors represent a promising potential platform for the development of a vaccine for AIDS. Although this vector is typically administered intramuscularly, it would be desirable to induce mucosal immunity by delivery through alternative routes. In this study, the immune response and biodistribution of ADV vectors delivered by different routes were evaluated. ADV vectors expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pol, and Env were delivered intramuscularly or intranasally into mice. Intranasal immunization induced greater HIV-specific immunoglobulin A (IgA) responses in mucosal secretions and sera than in animals with intramuscular injection, which showed stronger systemic cellular and IgG responses. Administration of the vaccine through an intranasal route failed to overcome prior ADV immunity. Animals exposed to ADV prior to vaccination displayed substantially reduced cellular and humoral immune responses to HIV antigens in both groups, though the reduction was greater in animals immunized intranasally. This inhibition was partially overcome by priming with a DNA expression vector expressing HIV-1 Gag, Pol, and Env before boosting with the viral vector. Biodistribution of recombinant adenovirus (rADV) vectors administered intranasally revealed infection of the central nervous system, specifically in the olfactory bulb, possibly via retrograde transport by olfactory neurons in the nasal epithelium, which may limit the utility of this route of delivery of ADV vector-based vaccines.  相似文献   

8.
9.
BACKGROUND: Lentiviral vectors, due to their capacity to transduce non-dividing cells, have become precious and worldwide used gene transfer systems. Their ability to efficiently and stably transduce dendritic cells (DCs) has led to their successful use as vaccination vectors for eliciting strong, specific and protective cellular immune responses mostly in anti-tumoral but also in anti-viral applications. However, the ability of lentiviral vectors to elicit an antibody-based protective immunity has, to date, not been evaluated. In the present study, we evaluated the potential of a lentiviral vector-based vaccine to elicit humoral immunity against West Nile virus (WNV). WNV is a mosquito-borne flavivirus that emerged in North America and causes encephalitis in humans, birds and horses. Neutralizing anti-WNV antibodies have been shown to be crucial for protection against WNV encephalitis. METHODS: The ability of lentiviral vector TRIP/sE(WNV), expressing the secreted soluble form of the envelope E-glycoprotein (sE(WNV)) from the highly virulent IS-98-ST1 strain of WNV, to induce a specific humoral response and protection against WNV infection was assessed in a mouse model of WNV encephalitis. RESULTS: Remarkably, a single immunization with a minute dose of TRIP/sE(WNV) was efficient at eliciting a long-lasting, protective and sterilizing humoral immunity, only 1 week after priming. CONCLUSIONS: This study broadens the applicability of lentiviral vectors as efficient non-replicating vaccines against pathogens for which a neutralizing humoral response is one active arm of the protective immunity. The TRIP/sE(WNV) lentiviral vector appears to be a promising tool for veterinary vaccination against zoonotic WNV.  相似文献   

10.
Vaccine strategies against latent tuberculosis infection   总被引:5,自引:0,他引:5  
The leading tuberculosis (TB) vaccines currently in clinical trials are all designed as prophylactic vaccines. Although these vaccines are highly active, they will most probably not result in sterilizing immunity and, therefore, will not solve the global problem of latent TB. An attractive strategy is to target the remaining dormant bacteria with vaccines based upon antigens induced as the bacteria change from active multiplication to non-replicating dormancy (latency antigens) or during reactivation as dormant bacteria resume active metabolism (resuscitation antigens). These late-stage antigens might have potential as post-exposure vaccines or could form the basis for a multi-stage vaccine strategy, in which they are combined with prophylactic vaccines based on early antigens from replicating bacteria.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by the rapid onset of intestinal T-cell depletion that initiates the progression to AIDS. The induction of protective immunity in the intestinal mucosa therefore represents a potentially desirable feature of a preventive AIDS vaccine. In this study, we have evaluated the ability of an enteric adenovirus, recombinant adenovirus 41 (rAd41), to elicit intestinal and systemic immune responses by different immunization routes, alone or in combination with rAd5. rAd41 expressing HIV envelope (Env) protein induced cellular immune responses comparable to those of rAd5-based vectors after either a single intramuscular injection or a DNA prime/rAd boost. Oral priming with rAd41-Env followed by intramuscular boosting with rAd5-Env stimulated a more potent CD8+ T-cell response in the small intestine than the other immunization regimens. Furthermore, the direct injection of rAd41-Env into ileum together with intramuscular rAd5-Env boosting increased Env-specific cellular immunity markedly in mucosal as well as systemic compartments. These data demonstrate that heterologous rAd41 oral or ileal priming with rAd5 intramuscular boosting elicits enhanced intestinal mucosal cellular immunity and that oral or ileal vector delivery for primary immunization facilitates the generation of mucosal immunity.  相似文献   

12.
T cells using the gamma delta T cell receptor (TCR) are abundant in mucosal and epidermal tissues in mice. Most studies of mucosal gamma delta T cells, however, have examined cells from the intestinal mucosa, whereas little is known about the presence or function of gamma delta T cells in the oral cavity. To better understand the involvement of oral gamma delta T cells in immunity, we have characterized TCR variable gamma-gene usage in the buccal epithelium from normal mice, and from mice challenged locally with a non-replicating antigen (bovine serum albumin [BSA]) or by influenza-virus infection as a replicating antigen. Our findings demonstrate a restricted use of V gamma genes by buccal gamma delta T cells, consisting primarily of V gamma 1.2, V gamma 3, and V gamma 5, with minimal use of V gamma 2 and V gamma 4 genes. Of particular interest, 3-4 days post-antigen challenge with BSA, there was a precipitous drop in the level of expression of V gamma 1.2, V gamma 3, and V gamma 5 genes, and to a lesser extent for the V gamma 2 gene, whereas V gamma 4 gene expression increased between days 1 and 2 post-priming. In influenza-infected mice, a similar pattern was observed for the V gamma 2 and V gamma 5 genes, but not other V gamma genes. The immune-modulating effects of oral antigen exposure on buccal gamma delta T cells suggest that these cells are functionally involved in the local immune response to both replicating and non-replicating antigens in oral mucosal surfaces.  相似文献   

13.
A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.  相似文献   

14.
Immunization of mucosal surfaces has become an attractive route of vaccine delivery because of its ability to induce mucosal immunity. Although various methods of inducing mucosal immunity are being developed, our laboratory has focused on developing adenoviruses as replication-competent and replication-incompetent vectors. The present report will summarize our progress in sequencing the entire bovine adenovirus-3 genome and identifying regions which can be deleted and subsequently used as insertion sites for foreign genes in developing recombinant viral vaccines. Using these recombinant viruses, we demonstrated the 'proof-of-principle' in developing mucosal immunity and, more importantly, inducing protection against bovine herpes virus in a natural host-cattle. Finally, we demonstrated that immunity and protection occurred even in animals that had pre-existing antibodies to the vector.  相似文献   

15.
Recombinant viruses are attractive candidates for the development of novel vaccines. A number of viruses have been engineered as vaccine vectors to express antigens from other pathogens or tumors. Inoculation of susceptible animals with this type of recombinant virus results in the induction of both humoral and cellular immune responses directed against the foreign antigens. A general problem to this approach is that existing immunity to the vector can diminish or completely abolish the efficacy of the viral vector. In this study, we investigated whether poliovirus recombinants are capable of inducing effective immunity to the foreign antigen in previously vaccinated animals. Antipoliovirus immunity was induced in susceptible mice by intraperitoneal immunization with live poliovirus. Immunized mice developed antibodies directed against capsid proteins that effectively neutralized poliovirus in vitro and protected animals from a lethal challenge with a high dose of pathogenic poliovirus. To test whether preexisting immunity reduces the efficacy of vaccination with recombinant poliovirus, immunized mice were inoculated with a recombinant poliovirus expressing the C-terminal half of chicken ovalbumin (Polio-Ova). Animals developed ovalbumin-specific antibodies and cytotoxic T lymphocytes (CTL). While the antibody titers observed in preimmune and naive mice were similar, the overall CTL response appeared to be reduced in preimmune mice. Importantly, vaccination with Polio-Ova was able to effectively protect preimmune mice against lethal challenge with a tumor expressing the antigen. Thus, preexisting immunity to poliovirus does not compromise seriously the efficacy of replication-competent poliovirus vaccine vectors. These results contrast with those observed for other viral vaccine vectors and suggest that preexisting immunity does not equally affect the vaccine potential of individual viral vectors.  相似文献   

16.
BACKGROUND: Despite attempts to develop efficient viral-based gene transfer therapies for the treatment of malignant tumors, only limited progress has been made to improve the efficacy of this approach. As an alternative, the use of replicating oncolytic adenoviruses with and without the expression of therapeutic transgenes is an area of active investigation. METHODS: We used a human melanoma xenograft tumor nude mouse model to test the efficacy of a bivalent vector approach consisting of two trans-complementing replication-incompetent adenoviral vectors that resulted in tumor-restricted oncolysis. We combined an E1-deleted non-replicating adenoviral vector expressing the herpes simplex virus thymidine kinase gene (AV.C2.TK) and Ad5.dl1014, an E4-deleted/E4orf4-only expressing adenovirus, to allow full replication competence when tumor cells were co-infected with both vectors. RESULTS: A375 tumors showed apoptosis at the ultrastructural level after transduction with the trans-complementing vector system that was not seen with injection of either vector alone. Apoptotic DNA fragments could be co-localized to sites of infection with the adenoviral vectors. A significant survival benefit was achieved for the trans-complementing vector treated animals compared to animals treated with either vector alone. Interestingly, the administration of GCV did not further increase animal survival over treatment with the trans-complementing system of viruses alone, and long-term survival was only seen in the trans-complementing vector treatment group. Intraperitoneal administration of a pseudo-wild-type vector Ad.dl327 resulted in significant hepatotoxicity, while intraperitoneal administration of the trans-complementing vectors resulted in only mild liver abnormalities. CONCLUSIONS: The trans-complementing vector approach using a combination of E1- and E4-deleted adenoviral vectors showed similar antitumor efficacy as reported for monovalent replicating vector systems, but may offer additional safety by reducing the risk of dissemination of the replication-competent vectors by requiring the presence of both vectors in a cell to achieve replication competence.  相似文献   

17.
Heterologous "prime-boost" regimens that involve priming with plasmid DNA vaccines and boosting with recombinant viral vectors have been shown to elicit potent virus-specific cytotoxic T-lymphocyte responses. Increasing evidence, however, suggests that the utility of recombinant viral vectors in human populations will be significantly limited by preexisting antivector immunity. Here we demonstrate that the coadministration of plasmid chemokines and colony-stimulating factors with plasmid DNA vaccines markedly increases the immunogenicity of DNA prime-recombinant adenovirus serotype 5 (rAd5) boost and DNA prime-recombinant vaccinia virus (rVac) boost vaccine regimens in BALB/c mice. In mice with preexisting anti-Ad5 immunity, priming with the DNA vaccine alone followed by rAd5 boosting elicited only marginal immune responses. In contrast, cytokine-augmented DNA vaccine priming followed by rAd5 vector boosting was able to generate potent immune responses in mice with preexisting anti-Ad5 immunity. These data demonstrate that plasmid cytokines can markedly improve the immunogenicity of DNA prime-viral vector boost vaccine strategies and can partially compensate for antivector immunity.  相似文献   

18.
Replication-defective adenovirus (ADV) and poxvirus vectors have shown potential as vaccines for pathogens such as Ebola or human immunodeficiency virus in nonhuman primates, but prior immunity to the viral vector in humans may limit their clinical efficacy. To overcome this limitation, the effect of prior viral exposure on immune responses to Ebola virus glycoprotein (GP), shown previously to protect against lethal hemorrhagic fever in animals, was studied. Prior exposure to ADV substantially reduced the cellular and humoral immune responses to GP expressed by ADV, while exposure to vaccinia inhibited vaccine-induced cellular but not humoral responses to GP expressed by vaccinia. This inhibition was largely overcome by priming with a DNA expression vector before boosting with the viral vector. Though heterologous viral vectors for priming and boosting can also overcome this effect, the paucity of such clinical viral vectors may limit their use. In summary, it is possible to counteract prior viral immunity by priming with a nonviral, DNA vaccine.  相似文献   

19.
A pediatric human immunodeficiency virus type 1 (HIV-1) vaccine would be desirable to protect infants against HIV-1 transmission from breast-feeding. Such a vaccine would need to induce protective immunity at mucosal surfaces in neonates as soon as possible after birth. Recombinant adenovirus (rAd) vectors have been shown to elicit potent systemic and mucosal virus-specific immune responses in adult nonhuman primates and humans, but these vectors have not previously been comprehensively studied in infants. In this study, we demonstrate that a single injection of rAd26 encoding simian immunodeficiency virus mac239 (SIVmac239) Gag on the day of birth elicited detectable Gag-specific cellular immune responses in rhesus monkeys, but these responses were transient and waned quickly. In contrast, an accelerated heterologous prime-boost regimen involving administration of rAd35 at birth and rAd26 at 4 weeks of life elicited potent and durable Gag-specific cellular and humoral immune responses in neonatal rhesus monkeys, including mucosal responses that remained detectable at 1 year of age. These results suggest the potential of an accelerated heterologous rAd prime-boost regimen as a candidate HIV-1 vaccine for newborns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号