首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

3.
Fibroblast growth factor binding protein 1 (FGFBP1) is expressed in various tumors and may serve as a diagnostic marker and/or a therapeutic target. Previous studies suggested FGFBP1 functions as an angiogenic switch molecule by regulating the activity of FGF2, and it was later found to associate with a broad spectrum of FGFs. To study FGFBP1, we used zebrafish, in which the function of extracellular matrix protein can be easily studied in intact tissues or organisms. When Fgfbp1 expression was knocked down, morphants manifested massive cell death and structural abnormalities. Cell death was most prominent in the brain and the neural tube, but not limited to those regions. These findings suggest that the primary function of Fgfbp1 may be to sustain cellular survival throughout embryogenesis. For comparison, the expression of fgf2 was limited to the early stage of embryogenesis and fgf2 morphants showed more severe phenotype, with high morbidity before reaching 14-somites. Taken together, our work reveals the physiologic function of Fgfbp1, and that its function could be exerted in a Fgf2-independent manner.  相似文献   

4.
Sake yeast suppresses acute alcohol-induced liver injury in mice   总被引:2,自引:0,他引:2  
Brewer's and baker's yeasts appear to have components that protect from liver injury. Whether sake yeast, Saccharomyces cerevisiae Kyokai no. 9, also has a hepatoprotective effect has not been examined. Here we show that sake yeast suppresses acute alcoholic liver injury in mice. Male C57BL/6 mice that had been fed a diet containing 1% sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed sake yeast, ethanol-induced increases in triglyceride (TG) and glutamate pyruvate transaminase (GPT) were significantly attenuated and hepatic steatosis was improved. In addition, sake yeast-fed mice showed a smaller decrease in hepatic S-adenosylmethionine (SAM) level and a smaller increase in plasma homocysteine (Hcy) level after ethanol treatment than the control mice, suggesting that a disorder of methionine metabolism in the liver caused by ethanol was relieved by sake yeast. These results indicate that sake yeast protects against alcoholic liver injury through maintenance of methionine metabolism in the liver.  相似文献   

5.
Translation elongation factor eEF1A, formerly known as EF-1 alpha, exists as two variant forms; eEF1A1, which is almost ubiquitously expressed, and eEF1A2, whose expression is restricted to muscle and brain at the level of whole tissues. Expression analysis of these genes has been complicated by a general lack of availability of antibodies that specifically recognize each variant form. Wasted mice (wst/wst) have a 15.8-kilobase deletion that abolishes activity of eEF1A2, but before this study it was unknown whether the deletion also affected neighboring genes. We have generated a panel of anti-peptide antibodies and used them to show that eEF1A2 is expressed at high levels in specific cell types in tissues previously thought not to express this variant, such as pancreatic islet cells and enteroendocrine cells in colon crypts. Expression of eEF1A1 and eEF1A2 is shown to be generally mutually exclusive, and we relate the expression pattern of eEF1A2 to the phenotype seen in wasted mice. We then carried out a series of transgenic experiments to establish whether the expression of other genes is affected by the deletion in wasted mice. We show that aspects of the phenotype such as motor neuron degeneration relate precisely to the relative expression of eEF1A1 and eEF1A2, whereas the immune system abnormalities are likely to result from a stress response. We conclude that loss of eEF1A2 function is solely responsible for the abnormalities seen in these mice.  相似文献   

6.
Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtorflox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.  相似文献   

7.
8.
Chondrocyte hypertrophy is crucial for endochondral ossification, but the mechanism underlying this process is not fully understood. We report that salt-inducible kinase 3 (SIK3) deficiency causes severe inhibition of chondrocyte hypertrophy in mice. SIK3-deficient mice showed dwarfism as they aged, whereas body size was unaffected during embryogenesis. Anatomical and histological analyses revealed marked expansion of the growth plate and articular cartilage regions in the limbs, accumulation of chondrocytes in the sternum, ribs and spine, and impaired skull bone formation in SIK3-deficient mice. The primary phenotype in the skeletal tissue of SIK3-deficient mice was in the humerus at E14.5, where chondrocyte hypertrophy was markedly delayed. Chondrocyte hypertrophy was severely blocked until E18.5, and the proliferative chondrocytes occupied the inside of the humerus. Consistent with impaired chondrocyte hypertrophy in SIK3-deficient mice, native SIK3 expression was detected in the cytoplasm of prehypertrophic and hypertrophic chondrocytes in developing bones in embryos and in the growth plates in postnatal mice. HDAC4, a crucial repressor of chondrocyte hypertrophy, remained in the nuclei in SIK3-deficient chondrocytes, but was localized in the cytoplasm in wild-type hypertrophic chondrocytes. Molecular and cellular analyses demonstrated that SIK3 was required for anchoring HDAC4 in the cytoplasm, thereby releasing MEF2C, a crucial facilitator of chondrocyte hypertrophy, from suppression by HDAC4 in nuclei. Chondrocyte-specific overexpression of SIK3 induced closure of growth plates in adulthood, and the SIK3-deficient cartilage phenotype was rescued by transgenic SIK3 expression in the humerus. These results demonstrate an essential role for SIK3 in facilitating chondrocyte hypertrophy during skeletogenesis and growth plate maintenance.  相似文献   

9.
Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODC-deficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation.  相似文献   

10.
Age-related macular degeneration (ARMD) with abnormal deposit formation under the retinal pigment epithelium (RPE) is the major cause of blindness in the Western world. basal laminar deposits are found in early ARMD and are composed of excess basement membrane material produced by the RPE. Here, we demonstrate that mice lacking the basement membrane component collagen XVIII/endostatin have massive accumulation of sub-RPE deposits with striking similarities to basal laminar deposits, abnormal RPE, and age-dependent loss of vision. The progressive attenuation of visual function results from decreased retinal rhodopsin content as a consequence of abnormal vitamin A metabolism in the RPE. In addition, aged mutant mice show photoreceptor abnormalities and increased expression of glial fibrillary acidic protein in the neural retina. Our data demonstrate that collagen XVIII/endostatin is essential for RPE function, and suggest an important role of this collagen in Bruch's membrane. Consistent with such a role, the ultrastructural organization of collagen XVIII/endostatin in basement membranes, including Bruch's membrane, shows that it is part of basement membrane molecular networks.  相似文献   

11.
12.
Spermine is the final product of the polyamine biosynthetic pathway and is ubiquitously present in most organisms. The genome of Arabidopsis thaliana has two genes encoding spermine synthase: ACAULIS5 (ACL5), whose loss-of-function mutants show a severe defect in stem elongation, and SPMS. In order to elucidate the function of spermine in plants, we isolated a T-DNA insertion mutant of the SPMS gene. Free and conjugated spermine levels in the mutant, designated spms-1, were significantly decreased compared with those in the wild-type, but no obvious morphological phenotype was observed in spms-1 plants. We further confirmed that acl5-1 spms-1 double mutants contained no spermine. Surprisingly, acl5-1 spms-1 was fully as viable as the wild-type and showed no phenotype except for the reduced stem growth due to acl5-1. These results indicate that spermine is not essential for survival of Arabidopsis, at least under normal growth conditions.  相似文献   

13.
Acetaminophen overdose is a leading cause of drug-related acute liver failure in the United States. Glutathione, a tripeptide antioxidant protects cells against oxidative damage from reactive oxygen species and plays a crucial role in the detoxification of xenobiotics, including acetaminophen. Glutathione is synthesized in a two-step enzymatic reaction. Glutamate-cysteine ligase carries out the rate-limiting and first step in glutathione synthesis. We have generated C57Bl/6 mice that conditionally overexpress glutamate-cysteine ligase, and report here their resistance to acetaminophen-induced liver injury. Indices of liver injury included histopathology and serum alanine aminotransferase activity. Male transgenic mice induced to overexpress glutamate-cysteine ligase exhibited resistance to acetaminophen-induced liver injury when compared with acetaminophen-treated male mice carrying, but not expressing glutamate-cysteine ligase transgenes, or to female glutamate-cysteine ligase transgenic mice. We conclude that glutamate-cysteine ligase activity is an important factor in determining acetaminophen-induced liver injury in C57Bl/6 male mice. Because people are known to vary in their glutamate-cysteine ligase activity, this enzyme may also be an important determinant of sensitivity to acetaminophen-induced liver injury in humans.  相似文献   

14.
Malfolded proteins in the endoplasmic reticulum (ER) inhibit translation initiation. This response is believed to be mediated by increased phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) and is hypothesized to reduce the work load imposed on the folding machinery during stress. Here we report that mutating the gene encoding the ER stress-activated eIF2alpha kinase PERK abolishes the phosphorylation of eIF2alpha in response to accumulation of malfolded proteins in the ER resulting in abnormally elevated protein synthesis and higher levels of ER stress. Mutant cells are markedly impaired in their ability to survive ER stress and inhibition of protein synthesis by cycloheximide treatment during ER stress ameliorates this impairment. PERK thus plays a major role in the ability of cells to adapt to ER stress.  相似文献   

15.
A critical role for antigen-specific Th1 cells in acute liver injury in mice.   总被引:16,自引:0,他引:16  
A novel liver injury model was established in mice by targeting of OVA-containing liposomes into the liver, followed by adoptive transfer of OVA-specific Th1 cells. Combined treatment of mice with OVA-containing liposomes and Th1 cell transfer caused an increase in serum transaminase activity that was paralleled with an elevation of serum IFN-gamma levels. In sharp contrast, OVA-specific Th2 cell transfer resulted in an increase of serum IL-4 levels, but did not induce liver injury. Neither NK, NK T, nor CD8+ T cells were required for the Th1-induced liver injury. The liver injury was blocked by anti-IFN-gamma mAb and anti-TNF-alpha mAb, but not by anti-Fas ligand mAb. The Fas/Fas ligand independency was also demonstrated using Fas-deficient lpr mice. These findings indicate that Th1 cells are the major effector cells in acute liver injury.  相似文献   

16.
This study was undertaken to interrogate cancer cell survival during long-term hypoxic stress. Two systems with relevance to carcinogenesis were employed: Fully transformed BJ cells and a renal carcinoma cell line (786-0). The dynamic of AMPK activity was consistent with a prosurvival role during chronic hypoxia. This was further supported by the effects of AMPK agonists and antagonists (AICAR and compound C). Expression of a dominant-negative AMPK alpha resulted in a decreased ATP level and significantly compromised survival in hypoxia. Dose-dependent prosurvival effects of rapamycin were consistent with mTOR inhibition being a critical downstream mediator of AMPK in persistent low oxygen.  相似文献   

17.
The present study was undertaken to investigate the effect of the new formyl peptide receptor 2/lipoxin A4 receptor agonist BML-111 on acetaminophen (APAP)-induced liver injury in mice and explore its possible mechanism(s). Male Swiss albino mice were intraperitoneally injected with BML-111 (1 mg/kg) twice daily for five consecutive days prior to a single intraperitoneal injection of APAP (500 mg/kg). Results have shown that APAP injection caused liver damage as indicated by significant increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). Liver histopathological examination revealed marked necrosis and inflammation. Additionally, APAP decreased activities of hepatic glutathione (GSH) and superoxide dismutase (SOD) with significant increase in the hepatic malondialdehyde (MDA) content. Furthermore, APAP increased serum nitrite/nitrate (NO2 ?/NO3 ? ) level and hepatic tumor necrosis factor alpha (TNF-α). Pretreatment with BML-111 significantly reversed all APAP-induced pathological changes. BML-111 prevented the increase of AST, ALT, and ALP. Also, BML-111 markedly attenuated APAP-induced necrosis and inflammation. It decreased MDA with increase in SOD and GSH. Importantly, BML-111 decreased NO2 ?/NO3 ? level and TNF-α. These findings suggest that BML-111 has hepatoprotective effects against APAP-induced liver injury in mice. Its protective effect may be attributed to its ability to counteract the inflammatory ROS generation and regulate cytokine effects.  相似文献   

18.
We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.  相似文献   

19.
Spermatogenesis requires intact, fully competent Sertoli cells. Here, we investigate the functions of Dicer, an RNaseIII endonuclease required for microRNA and small interfering RNA biogenesis, in mouse Sertoli cell function. We show that selective ablation of Dicer in Sertoli cells leads to infertility due to complete absence of spermatozoa and progressive testicular degeneration. The first morphological alterations appear already at postnatal day 5 and correlate with a severe impairment of the prepubertal spermatogenic wave, due to defective Sertoli cell maturation and incapacity to properly support meiosis and spermiogenesis. Importantly, we find several key genes known to be essential for Sertoli cell function to be significantly down-regulated in neonatal testes lacking Dicer in Sertoli cells. Overall, our results reveal novel essential roles played by the Dicer-dependent pathway in mammalian reproductive function, and thus pave the way for new insights into human infertility.  相似文献   

20.
Palatal ridges, or rugae palatinae, are corrugated structures observed in the hard palate region. They are found in most mammalian species, but their number and arrangement are species-specific. Nine palatal rugae are found in the mouse secondary palate. Previous studies have shown that epithelial Shh signaling in the palatal ridge plays an important role during rugae development. Moreover, Wnt family members, including LEF1, play a functional role in orofacial morphogenesis. To explore the function of Shh during rugae development, we utilized the maternal transfer of 5E1 (anti-Shh antibody) to mouse embryos. 5E1 induced abnormal rugae patterning characterized by a spotted shape of palatal ridge rather than a stripe. The expression patterns of Shh and Shh-related genes, Sostdc1, Lef1 and Ptch1, were disrupted following 5E1 injection. Moreover, rugae-specific cell proliferation and inter-rugae-specific apoptosis were affected by inhibition of Shh signaling. We hypothesize that the altered gene expression patterns and the change in molecular events caused by the inhibition of Shh signaling may have induced abnormal rugae patterning. Furthermore, we propose a reaction–diffusion model generated by Wnt, Shh and Sostdc1 signaling. In this study, we show that Sostdc1, a secreted inhibitor of the Wnt pathway, is a downstream target of Shh and hypothesize that the interaction of Wnt, Shh and Sostdc1 is a pivotal mechanism controlling the spatial patterning of palatal rugae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号