首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rise in the prevalence of diagnosed cases of autism spectrum disorder (ASD) has been reported in several studies in recent years. While this rise in ASD prevalence is at least partially related to increased awareness and broadened diagnostic criteria, the role of environmental factors cannot be ruled out, especially considering that the cause of most cases of ASD remains unknown. The study of families with multiple affected children can provide clues about ASD etiology. While the majority of research on ASD multiplex families has focused on identifying genetic anomalies that may underlie the disorder, the study of symptom severity across ASD birth order may provide evidence for environmental factors in ASD. We compared social and cognitive measures of behavior between over 300 first and second affected siblings within multiplex autism families obtained from the Autism Genetic Resource Exchange dataset. Measures included nonverbal IQ assessed with the Ravens Colored Progressive Matrices, verbal IQ assessed with the Peabody Picture Vocabulary Test, and autism severity assessed with the Social Responsiveness Scale (SRS), an instrument established as a quantitative measure of autism. The results indicated that females were more severely impacted by ASD than males, especially first affected siblings. When first and second affected siblings were compared, significant declines in nonverbal and verbal IQ scores were observed. In addition, SRS results demonstrated a significant increase in autism severity between first and second affected siblings consistent with an overall decline in function as indicated by the IQ data. These results remained significant after controlling for the age and sex of the siblings. Surprisingly, the SRS scores were found to only be significant when the age difference between siblings was less than 2 years. These results suggest that some cases of ASD are influenced by a dosage effect involving unknown epigenetic, environmental, and/or immunological factors.  相似文献   

2.
De novo mutation is highly implicated in autism spectrum disorder (ASD). However, the contribution of post-zygotic mutation to ASD is poorly characterized. We performed both exome sequencing of paired samples and analysis of de novo variants from whole-exome sequencing of 2,388 families. While we find little evidence for tissue-specific mosaic mutation, multi-tissue post-zygotic mutation (i.e. mosaicism) is frequent, with detectable mosaic variation comprising 5.4% of all de novo mutations. We identify three mosaic missense and likely-gene disrupting mutations in genes previously implicated in ASD (KMT2C, NCKAP1, and MYH10) in probands but none in siblings. We find a strong ascertainment bias for mosaic mutations in probands relative to their unaffected siblings (p = 0.003). We build a model of de novo variation incorporating mosaic variants and errors in classification of mosaic status and from this model we estimate that 33% of mosaic mutations in probands contribute to 5.1% of simplex ASD diagnoses (95% credible interval 1.3% to 8.9%). Our results indicate a contributory role for multi-tissue mosaic mutation in some individuals with an ASD diagnosis.  相似文献   

3.
Increased male prevalence has been repeatedly reported in several neurodevelopmental disorders (NDs), leading to the concept of a “female protective model.” We investigated the molecular basis of this sex-based difference in liability and demonstrated an excess of deleterious autosomal copy-number variants (CNVs) in females compared to males (odds ratio [OR] = 1.46, p = 8 × 10−10) in a cohort of 15,585 probands ascertained for NDs. In an independent autism spectrum disorder (ASD) cohort of 762 families, we found a 3-fold increase in deleterious autosomal CNVs (p = 7 × 10−4) and an excess of private deleterious single-nucleotide variants (SNVs) in female compared to male probands (OR = 1.34, p = 0.03). We also showed that the deleteriousness of autosomal SNVs was significantly higher in female probands (p = 0.0006). A similar bias was observed in parents of probands ascertained for NDs. Deleterious CNVs (>400 kb) were maternally inherited more often (up to 64%, p = 10−15) than small CNVs < 400 kb (OR = 1.45, p = 0.0003). In the ASD cohort, increased maternal transmission was also observed for deleterious CNVs and SNVs. Although ASD females showed higher mutational burden and lower cognition, the excess mutational burden remained, even after adjustment for those cognitive differences. These results strongly suggest that females have an increased etiological burden unlinked to rare deleterious variants on the X chromosome. Carefully phenotyped and genotyped cohorts will be required for identifying the symptoms, which show gender-specific liability to mutational burden.  相似文献   

4.
We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ∼2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands’ CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.  相似文献   

5.
6.

Introduction

Males and females in the general population differ, on average, in their drive for empathizing (higher in females) and systemizing (higher in males). People with autism spectrum disorder (ASD) show a drive for systemizing over empathizing, irrespective of sex, which led to the conceptualisation of ASD as an ‘extreme of the typical male brain’. The opposite cognitive profile, an ‘extreme of the typical female brain’, has been proposed to be linked to conditions such as psychosis and mania/hypomania.

Methods

We compared an empathizing-over-systemizing bias (for short ‘empathizing bias’) in individuals with ASD, who had experienced psychotic illness (N = 64) and who had not (N = 71).

Results

There were overall differences in the distribution of cognitive style. Adults with ASD who had experienced psychosis were more likely to show an empathizing bias than adults with ASD who had no history of psychosis. This was modulated by IQ, and the group-difference was driven mainly by individuals with above-average IQ. In women with ASD and psychosis, the link between mania/hypomania and an empathizing bias was greater than in men with ASD.

Conclusions

The bias for empathizing over systemizing may be linked to the presence of psychosis in people with ASD. Further research is needed in a variety of clinical populations, to understand the role an empathizing bias may play in the development and manifestation of mental illness.  相似文献   

7.
Recent studies have highlighted the involvement of rare (<1% frequency) copy-number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1.  相似文献   

8.
Chromosomal microarray analysis is now commonly used in clinical practice to identify copy number variants (CNVs) in the human genome. We report our experience with the use of the 105 K and 180 K oligonucleotide microarrays in 215 consecutive patients referred with either autism or autism spectrum disorders (ASD) or developmental delay/learning disability for genetic services at the University of Kansas Medical Center during the past 4 years (2009–2012). Of the 215 patients [140 males and 75 females (male/female ratio = 1.87); 65 with ASD and 150 with learning disability], abnormal microarray results were seen in 45 individuals (21%) with a total of 49 CNVs. Of these findings, 32 represented a known diagnostic CNV contributing to the clinical presentation and 17 represented non-diagnostic CNVs (variants of unknown significance). Thirteen patients with ASD had a total of 14 CNVs, 6 CNVs recognized as diagnostic and 8 as non-diagnostic. The most common chromosome involved in the ASD group was chromosome 15. For those with a learning disability, 32 patients had a total of 35 CNVs. Twenty-six of the 35 CNVs were classified as a known diagnostic CNV, usually a deletion (n = 20). Nine CNVs were classified as an unknown non-diagnostic CNV, usually a duplication (n = 8). For the learning disability subgroup, chromosomes 2 and 22 were most involved. Thirteen out of 65 patients (20%) with ASD had a CNV compared with 32 out of 150 patients (21%) with a learning disability. The frequency of chromosomal microarray abnormalities compared by subject group or gender was not statistically different. A higher percentage of individuals with a learning disability had clinical findings of seizures, dysmorphic features and microcephaly, but not statistically significant. While both groups contained more males than females, a significantly higher percentage of males were present in the ASD group.  相似文献   

9.
Fischbach GD  Lord C 《Neuron》2010,68(2):192-195
In an effort to identify de novo genetic variants that contribute to the overall risk of autism, the Simons Foundation Autism Research Initiative (SFARI) has gathered a unique sample called the Simons Simplex Collection (SSC). More than 2000 families have been evaluated to date. On average, probands in the current sample exhibit moderate to severe autistic symptoms with relatively little intellectual disability. An interactive database has been created to facilitate correlations between clinical, genetic, and neurobiological data.  相似文献   

10.
Epidemiologic approaches to testing and estimating familial aggregation of a disease consist of comparing rates of disease in relatives of individuals with the disease (known as case probands) with rates of disease in relatives of individuals without the disease (known as control probands). Gold et al. (J Am Stat Ass 1967;62: 409-420) derived an explicit mathematical model and sampling methods, under which this approach is equivalent to testing the null hypotheses that the disease risk in families is homogenous. A basic assumption of this model is that every family member has the same risk of disease and that disease status is independent among family members, although the disease risk may vary between families. When the disease is suspected of having a genetic component, rather than being purely environmental, this model has been shown to be appropriate for detecting disease aggregation in siblings, when relatives are siblings of probands. This model however is unrealistic for use in nuclear families when the affected status of offspring is not independent of the affected status of parents, and these families are selected through an affected or an unaffected parent, so that a parent is the proband and relatives are offspring of probands. We extend the Gold et al. model to allow for the disease risk in offspring to vary with the affected status of the parent. We assume that families are selected through affected and unaffected parents, under a variation of single ascertainment. Under this study design, we show that the usual test of association between affected status of probands and relatives, performed by comparing sample proportions of affected relatives of affected and unaffected probands, respectively, is no longer equivalent to a test of homogeneity of disease risk in offspring. Instead, it is equivalent to testing that the disease risk in offspring is independent of the number of affected parents. This test reduces to a test of homogeneity if and only if one assumes that the variation in disease risk in offspring, between families, is solely due to the variation in the number of affected parents. As a result, we show that under this study design, the standard chi2 test must be modified in order to obtain a valid test of familial aggregation. In addition the sample proportions of affected relatives of case and control probands, respectively, are shown to provide unbiased estimates of the expected risk of disease in an offspring given an affected/unaffected parent. We apply these results to methods of sample selection and discuss the practical implications of these findings.  相似文献   

11.
IntroductionClinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD.MethodsWe identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents.ResultsThree male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6).ConclusionsWe reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder.  相似文献   

12.
In order to assess potential associations between autism spectrum disorder (ASD) phenotype, functional GI disorders and fecal microbiota, we recruited simplex families, which had only a single ASD proband and neurotypical (NT) siblings, through the Simons Simplex Community at the Interactive Autism Network (SSC@IAN). Fecal samples and metadata related to functional GI disorders and diet were collected from ASD probands and NT siblings of ASD probands (age 7–14). Functional gastrointestinal disorders (FGID) were assessed using the parent-completed ROME III questionnaire for pediatric FGIDs, and problem behaviors were assessed using the Child Behavior Check List (CBCL). Targeted quantitative polymerase chain reaction (qPCR) assays were conducted on selected taxa implicated in ASD, including Sutterella spp., Bacteroidetes spp. and Prevotella spp. Illumina sequencing of the V1V2 and the V1V3 regions of the bacterial 16S rRNA genes from fecal DNA was performed to an average depth of 208,000 and 107,000 high-quality reads respectively. Twenty-five of 59 ASD children and 13 of 44 NT siblings met ROME III criteria for at least one FGID. Functional constipation was more prevalent in ASD (17 of 59) compared to NT siblings (6 of 44, P = 0.035). The mean CBCL scores in NT siblings with FGID, ASD children with FGID and ASD without FGID were comparably higher (58–62 vs. 44, P < 0.0001) when compared to NT children without FGID. There was no significant difference in macronutrient intake between ASD and NT siblings. There was no significant difference in ASD severity scores between ASD children with and without FGID. No significant difference in diversity or overall microbial composition was detected between ASD children with NT siblings. Exploratory analysis of the 16S rRNA sequencing data, however, identified several low abundance taxa binned at the genus level that were associated with ASD and/or first order ASD*FGID interactions (FDR <0.1).  相似文献   

13.
Scientific literature exploring the value of assistance dogs to children with autism spectrum disorder (ASD) is rapidly emerging. However, there is comparably less literature reporting the effects of pet (as opposed to assistance) dogs to these children. In particular, there are no known validated scales which assess how children may alter their behaviours in the presence of the dog, to evaluate the efficacy of pet dogs to these families. Additionally, given the highly individualised nature of ASD it is likely that some children and families gain more benefits from dog ownership than others, yet no research has reported the effect of individual differences. This pilot study reports the development of a 28-item scale based on the perceived impact of a pet dog on a child with autism by parents (Lincoln Autism Pet Dog Impact Scale—LAPDIS). The scale is comprised of three mathematically derived factors: Adaptability, Social Skills and Conflict Management. We assessed how individual differences (aspects) may be associated with scores on these three factors. Family Aspects and Dog Aspects were not significantly associated with ratings on the three factors, but Child Aspects (including: contact with horses, child age, disability level and language abilities) were related to impact of the dog on all factors. Training Aspects were related to scores on Social Skills (formal training with children with ASD and dogs and attendance at PAWS workshops run by Dogs for Good). These results suggest that individual differences associated with the child and the training approach may be important considerations for a positive impact from dog ownership on families with children with ASD. Differences in family features and the dog may not be so important, but may be worthy of further investigations given the early stage of development in this field.  相似文献   

14.
Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.  相似文献   

15.
Delineation of a cognitive endophenotype for autism is useful both for exploring the genetic mechanisms underlying the disorder and for identifying which cognitive traits may be primary to it. This study investigated whether first-degree relatives of individuals with autism spectrum disorders (ASDs) demonstrate a specific profile of performance on a range of components of executive function (EF), to determine whether EF deficits represent possible endophenotypes for autism. Parents and siblings of ASD and control probands were tested on EF tasks measuring planning, set-shifting, inhibition and generativity. ASD parents showed poorer performance than control parents on a test of ideational fluency or generativity, and ASD fathers demonstrated a weakness in set-shifting to a previously irrelevant dimension. ASD siblings revealed a mild reduction in ideational fluency and a weakness in non-verbal generativity when compared with control siblings. Neither ASD parents nor siblings displayed significant difficulties with planning or inhibition. These results indicated that the broad autism phenotype may not be characterized primarily by impairments in planning and cognitive flexibility, as had been previously proposed. Weaknesses in generativity emerged as stronger potential endophenotypes in this study, suggesting that this aspect of EF should play a central role in cognitive theories of autism. However, discrepancies in the EF profile demonstrated by parents and siblings suggest that factors related to age or parental responsibility may affect the precise pattern of deficits observed.  相似文献   

16.

Background

Research investigating cognition and behaviour in Sotos syndrome has been sporadic and to date, there is no published overview of study findings.

Method

A systematic review of all published literature (1964–2015) presenting empirical data on cognition and behaviour in Sotos syndrome. Thirty four journal articles met inclusion criteria. Within this literature, data relating to cognition and/or behaviour in 247 individuals with a diagnosis of Sotos syndrome were reported. Ten papers reported group data on cognition and/or behaviour. The remaining papers employed a case study design.

Results

Intelligence quotient (IQ) scores were reported in twenty five studies. Intellectual disability (IQ < 70) or borderline intellectual functioning (IQ 70–84) was present in the vast majority of individuals with Sotos syndrome. Seven studies reported performance on subscales of intelligence tests. Data from these studies indicate that verbal IQ scores are consistently higher than performance IQ scores. Fourteen papers provided data on behavioural features of individuals with Sotos syndrome. Key themes that emerged in the behavioural literature were overlap with ASD, ADHD, anxiety and high prevalence of aggression/tantrums.

Conclusion

Although a range of studies have provided insight into cognition and behaviour in Sotos syndrome, specific profiles have not yet been fully specified. Recommendations for future research are provided.  相似文献   

17.
SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.  相似文献   

18.
Complex segregation analysis of autism.   总被引:9,自引:3,他引:6       下载免费PDF全文
A complex segregation analysis of autism in 185 Utah families was carried out using the mixed model. The 209 affected individuals in these families represent nearly complete ascertainment of the autistic cases born in Utah between 1965 and 1984. The sibling recurrence risk for autism was 4.5% (95% confidence limits 2.8%-6.2%). Likelihoods were maximized for major-gene models, a polygenic model, a sibling-effect model, and a mixed model consisting of major-gene and shared-sibling effects. The analysis provided no evidence for major-locus inheritance of autism. Subdivision of the sample according to the probands' IQ levels showed that sibling recurrence risk did not vary consistently with IQ level. A segregation analysis of families in which the proband had an IQ less than 50 also failed to provide evidence for a major locus. However, because of the etiologic heterogeneity of this disorder, genetic analysis of other meaningful subsets of families could prove informative.  相似文献   

19.
To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5’ splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.  相似文献   

20.
Seizures are a common co-occurring condition in those with fragile X syndrome (FXS), and in those with idiopathic autism spectrum disorder (ASD). Seizures are also associated with ASD in those with FXS. However, little is known about the rate of seizures and how commonly these problems co-occur with ASD in boys with the FMR1 premutation. We, therefore, determined the prevalence of seizures and ASD in boys with the FMR1 premutation compared with their sibling counterparts and population prevalence estimates. Fifty premutation boys who presented as clinical probands (N = 25), or non-probands (identified by cascade testing after the proband was found) (N = 25), and 32 non-carrier controls were enrolled. History of seizures was documented and ASD was diagnosed by standardized measures followed by a team consensus of ASD diagnosis. Seizures (28%) and ASD (68%) were more prevalent in probands compared with non-probands (0 and 28%), controls (0 and 0%), and population estimates (1 and 1.7%). Seizures occurred more frequently in those with the premutation and co-morbid ASD particularly in probands compared with those with the premutation alone (25 vs. 3.85%, p = 0.045). Although cognitive and adaptive functioning in non-probands were similar to controls, non-probands were more likely to meet the diagnosis of ASD than controls (28 vs. 0%, p < 0.0001). In conclusion, seizures were relatively more common in premutation carriers who presented clinically as probands of the family and seizures were commonly associated with ASD in these boys. Therefore, boys with the premutation, particularly if they are probands should be assessed carefully for both ASD and seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号