首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doklady Biochemistry and Biophysics - Using the patch-clamp method in the whole cell configuration, it was shown that external potassium ions play an important role in the regulation of...  相似文献   

2.
大电导钙激活钾通道(BKCa)广泛分布于血管平滑肌细胞(VSMCs).由通道组成亚基α和调节亚基β构成.BKCa在细胞膜电位以及血管张力方面有重要的调节作用,并且与高血压等心血管类疾病的发生也有密切的关系.本文就BKCa通道的分子结构、生理功能及其与心血管疾病的关系研究进展作一综述.  相似文献   

3.
4.
PTEN基因诱导人胚肾293细胞凋亡和细胞周期停滞   总被引:1,自引:0,他引:1  
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

5.
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
Highlights
  • •A panel of HEK293 isogenic cell lines with knockout of GALNT genes.
  • •Identification of nonredundant O-glycosylation sites regulated by specific GalNAc-T isoforms.
  • •GalNAc-T7 and T10 contribute to follow-up activity in regions of high density O-glycosylation.
  • •GalNAc-T11 specifically controls O-glycosylation of specific linker regions in the low-density lipoprotein receptor related proteins.
  相似文献   

6.
The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3) K+ channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots). Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes, including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+-dependent K+ secretion. Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular Ca2+ levels, activates this high Ca2+-affinity K+ channel. Further, with sites of expression localized to the apical cell membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane potential and K+ secretion.  相似文献   

7.
8.
9.
The endogenous volume-regulated anion channel (VRAC) from HEK293 cells was pharmacologically characterized using the whole-cell patch-clamp technique. Under isotonic conditions a small (1.3 nS), Ca2+-independent Cl conductance was measured. However, swelling at 75% tonicity activated a VRAC identified as an outward-rectifying anion current (P l > P Cl > P gluconate), which was ATP-dependent and showed inactivation at positive potentials. Activation of this current followed a sigmoid time course, reaching a plateau conductance of 42.6 nS after 12–15 min (t 1/2 = 7 min). The pharmacology of this VRAC was investigated using standard Cl-channel blockers (NPPB, DIDS, and tamoxifen) as well as a new group (acidic di-aryl ureas) of Cl-channel blockers (NS1652, NS3623, NS3749, and NS3728). The acidic di-aryl ureas were originally synthezised for inhibition of the human erythrocyte Cl conductance in vivo. NS3728 was the most potent VRAC blocker in this series (IC 50 = 0.40 µM) and even more potent than tamoxifen (2.2 µM). NS3728 accelerated channel inactivation at positive potentials. These results show that acidic di-aryl ureas constitute a promising starting point for the synthesis of potent inhibitors of VRAC.  相似文献   

10.
目的:为探讨SPARC(secreted protein acidic and rich in cysteine)在人恶性肿瘤发生、发展中的作用及其分子机制,进一步明确SPARC发挥作用的方式及其与肿瘤发生类型的关系。方法:我们首先提取了人乳腺癌细胞系MCF-7的总RNA,在对总RNA进行纯度与定量检测后,利用RT-PCR的方法,以该总RNA为模板,将其反转录为cDNA;再设计引物,以该cDNA为模板,利用PCR扩增出包含Sparc编码区的DNA片段,将该产物纯化后通过T-A克隆连接入pMD20-T载体,利用菌落PCR及DNA测序进行鉴定。以pMD20-T-Sparc为模板,我们设计了特异的针对Sparc全长编码区的引物,并在引物5'端分别加入BamHI、HindIII酶切位点,通过PCR将Sparc编码区扩增出来,经纯化及双酶切后与真核表达载体pcDNA3.1myc-his(-)相连,再经菌落PCR和DNA测序进行鉴定。通过瞬时转染的方法,利用脂质体将所构建的重组SPARC真核表达载体转染HEK293细胞,48h后裂解所培养的细胞,使用western blot检测有无SPARC的表达。结果:测序证实所克隆的Sparc编码区cDNA正确地插入pcDNA3.1myc-his(-)中,western blot检测证实其在HEK293细胞中得到表达,而空载体转染的细胞则无表达,说明所构建的pcDNA3.1myc-his(-)-Sparc能够成功表达。结论:我们成功克隆了人Sparc cDNA,构建了其真核表达载体,并在HEK293细胞中得到有效表达,从而为进一步研究人SPARC的功能及其与肿瘤的关系奠定了基础。  相似文献   

11.
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

12.
Fusarochromanone (FC101), a mycotoxin produced by the fungus Fusarium equiseti, is frequently observed in the contaminated grains and feedstuffs, which is toxic to animals and humans. However, the underlying molecular mechanism remains to be defined. In this study, we found that FC101 inhibited cell proliferation and induced cell death in COS7 and HEK293 cells in a concentration-dependent manner. Flow cytometric analysis showed that FC101 induced G1 cell cycle arrest and apoptosis in the cells. Concurrently, FC101 downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and Cdc25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in hypophosphorylation of Rb. FC101 also inhibited protein expression of Bcl-2, Bcl-xL, Mcl-1 and survivin, and induced expression of BAD, leading to activation of caspase 3 and cleavage of PARP, indicating caspase-dependent apoptosis. However, Z-VAD-FMK, a pan-caspase inhibitor, only partially prevented FC101-induced cell death, implying that FC101 may induce cell death through both caspase-dependent and -independent mechanisms. Our results support the notion that FC101 executes its toxicity at least by inhibiting cell proliferation and inducing cell death.  相似文献   

13.
The molecular and cellular basis of the psychotropic actions of adrenal corticosteroids is poorly understood. Previously, we reported that modulation of large conductance Ca2+-activated potassium channel (BK-channel) function by glucocorticoids can be recapitulated in human embryonic kidney293 (HEK293) cells (J Physiol 537:57, 2001). In the present paper, we examined the effect of dexamethasone on the expression of candidate mediator proteins of glucocorticoid action, dex-ras1 and serum and glucocorticoid inducible protein kinase 1 (SGK), in HEK293 cells. Dex-ras1 mRNA was readily detectable under basal conditions however, no changes of dex-ras1 mRNA expression occurred upon exposure to 100 nM of dexamethasone for 2 h. In contrast, a 2.5-fold increase of SGK mRNA was found under similar conditions. Total levels of cellular SGK protein were unaltered upon exposure to dexamethasone, but a marked increase of SGK in a Triton-X100 insoluble fraction was observed. BK-channel α-subunits could not be co-immunoprecipitated with SGK. In summary, SGK, but not dex-ras1, mRNA is rapidly induced by glucocorticoid stimulation in HEK293 cells. However, there appears to be no direct protein-protein interaction between SGK and BK-channel α-subunits. Presented to mark the 70th birthday of Professor George Fink. Special issue article in honor of George Fink.  相似文献   

14.
Rab11是一种在真核生物细胞生命活动过程中发挥多种调控作用的小分子GTP酶.EoRab11a是八肋游仆虫中的Rab11蛋白同源物,为了解EoRab11a蛋白在细胞中的功能,本研究将EoRab11a基因克隆到哺乳动物表达载体pEGFP-C2中,构建重组表达质粒pEGFP-C2-EoRab11a,转染HEK293T细胞并观察其细胞定位.在间期HEK293T细胞中,EoRab11a定位于细胞核附近;在游仆虫细胞中,EoRab11a具有相似的分布模式.在HEK293T细胞的胞质分裂过程中,EoRab11a在分裂沟附近、分裂沟收缩区、以及最后形成的中间体处分布,提示EoRab11a可能参与了胞质分离过程中分裂沟及中间体处的膜泡运输事件.  相似文献   

15.
Clotrimazole (CLT), a member of the antifungal imidazole family of compounds, has been found to inhibit both calcium (Ca2+)-activated 86Rb and potassium (K) fluxes of human red cells and to inhibit red cell binding of 125I-charybdotoxin (ChTX) [11]. We have now used patch-clamp techniques to demonstrate reversible inhibition of whole cell KCa2+ currents in murine erythroleukemia (MEL) cells by submicromolar concentrations of CLT. Inhibition was equivalent whether currents were elicited by bath application of the Ca2+ ionophore A23187 or by dialyzing cells with a pipette solution containing micromolar concentrations of free Ca2+. The extent of inhibition of whole cell MEL KCa2+ currents was voltage-dependent, decreasing with increasing test potential. We also determined the single channel basis of the CLT inhibition in MEL cells by demonstrating the inhibition of a calcium-activated, ChTX-sensitive K channel by CLT in outside-out patches. The channel was also blocked by the des-imidazolyl metabolite of CLT, 2-chlorophenyl-bisphenyl-methanol (MET II) [15], thus demonstrating that the imidazole ring is not required for the inhibitory action of CLT. Single KCa2+ channels were also evident in inside-out patches of MEL cells. Block of K current by CLT was not unique to MEL cells. CLT also inhibited a component of the whole cell K current in PC12 cells. Channel specificity of block by CLT was determined by examining its effects on other types of voltage-sensitive currents. CLT block showed the following rank order of potency: K currents in PC12 cells > Ca2+ currents in PC12 cells ≫ Na currents in sympathetic neurons. These results demonstrate that direct inhibition of single KCa2+ by CLT can be dissociated from inhibition of cytochrome P-450 in MEL cells. Received: 10 September 1996/Revised: 12 December 1996  相似文献   

16.
Lu C  Chen D  Zhang Z  Fang F  Wu Y  Luo L  Yin Z 《Molecules and cells》2007,24(2):210-214
The 90-kDa heat shock protein (HSP90) normally functions as a molecular chaperone participating in folding and stabilizing newly synthesized proteins, and refolding denatured proteins. The HSP90 inhibitor geldanamycin (GA) occupies the ATP/ADP binding pocket of HSP90 so inhibits its chaperone activity and causes subsequent degradation of HSP90 client proteins by proteasomes. Here we show that GA reduces the level of endogenous c-Jun in human embryonic kidney 293 (HEK293) cells in a time and dose dependent manner, and that this decrease can be reversed by transfection of HSP90 plasmids. Transfection of HSP90 plasmids in the absence of GA increases the level of endogenous c-Jun protein, but has no obvious affect on c-Jun mRNA levels. We also showed that HSP90 prolongs the half-life of c-Jun by stabilizing the protein; the proteasome inhibitor N-benzoyloxy-carbonyl (Z)-Leu-Leu-leucinal (MG132) blocks the degradation of c-Jun promoted by GA. Transfection of HSP90 plasmids did not obviously alter phosphorylation of c-Jun, and a Jun-2 luciferase activity assay indicated that over-expression of HSP90 elevated the total protein activity of c-Jun in HEK293 cells. All our evidence indicates that HSP90 stabilizes c-Jun protein, and so increases the total activity of c-Jun in HEK293 cells.  相似文献   

17.
SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.  相似文献   

18.
cDNA encoding the full-length hKv1.3 lymphocyte channel and a C-terminal truncated (Δ459-523) form that lacks the putative PKA Ser468 phosphorylation site were stably transfected in human embryonic kidney (HEK) 293 cells. Immunostaining of the transfected cells revealed a distribution at the plasma membrane that was uniform in the case of the full-length channel whereas clustering was observed in the case of the truncated channel. Some staining within the cell cytoplasm was found in both instances, suggesting an active process of biosynthesis. Analyses of the K+ current by the patch-clamp technique in the whole cell configuration showed that depolarizing steps to 40 mV from a holding potential (HP) of −80 mV elicited an outward current of 2 to 10 nA. The current threshold was positive to −40 mV and the current amplitude increased in a voltage-dependent manner. The parameters of activation were −5.7 and −9.9 mV (slope factor) and −35 mV (half activation, V 0.5) in the case of the full-length and truncated channels, respectively. The characteristics of the inactivation were 14.2 and 24.6 mV (slope factor) and −17.3 and −39.0 mV (V 0.5) for the full-length and truncated channels, respectively. The activation time constant of the full-length channel for potentials ranging from −30 to 40 mV decreased from 18 to 12 msec whereas the inactivation time constant decreased from 6600 msec at −30 mV to 1800 msec at 40 mV. The unit current amplitude measured in cells bathing in 140 mm KCl was 1.3 ± 0.1 pA at 40 mV, the unit conductance, 34.5 pS and the zero current voltage, 0 mV. Both forms of the channels were inhibited by TEA, 4-AP, Ni2+ and charybdotoxin. In contrast to the native (Jurkat) lymphocyte Kv1.3 channel that is fully inhibited by PKA and PKC, the addition of TPA resulted in 34.6 ± 7.3% and 38.7 ± 9.4% inhibition of the full-length and the truncated channels, respectively. 8-BrcAMP induced a 39.4 ± 5.4% inhibition of the full-length channel but had no effect (8.6 ± 8.3%) on the truncated channel. Cell dialysis with alkaline phosphatase had no effects, suggesting that the decreased sensitivity of the transfected channels to PKA and PKC was not due to an already phosphorylated channel. Patch extract experiments suggested that the hKv1.3 channel was partially sensitive to PKA and PKC. Cotransfecting the Kvβ1.2 subunit resulted in a decrease in the value of the time constant of inactivation of the full-length channel but did not modify its sensitivity to PKA and PKC. The cotransfected Kvβ2 subunit had no effects. Our results indicate that the hKv1.3 lymphocyte channel retains its electrophysiological characteristics when transfected in the Kvβ-negative HEK 293 cell line but its sensitivity to modulation by PKA and PKC is significantly reduced. Received: 18 June 1997/Revised: 7 October 1997  相似文献   

19.
核糖体蛋白L11(RPL11)是真核生物核糖体的重要组成部分.RPL11参与核糖体的生物发生及其它的一些细胞调控过程.本研究在人细胞中研究了游仆虫RPL11(EoRPL11)的亚细胞定位及对蛋白质合成的调控功能.通过激光共聚焦显微镜观察发现,融合绿色荧光蛋白的EoRPL11分布于细胞核中,并集中于核仁上;将EoRPL11和海肾荧光素酶报告基因共转染HEK293T细胞后发现,细胞内海肾荧光素酶的酶活性明显下降,并呈现一种剂量依赖性关系;实时定量PCR分析则表明,海肾荧光素酶的mRNA水平并没有明显改变;同时,细胞的增殖也受到了一定的抑制.以上结果表明,EoRPL11是核蛋白,并且其过表达可能在翻译水平上抑制细胞内总蛋白质的合成.  相似文献   

20.
G protein-coupled receptor 3 (GPR3) is a constitutively active receptor that maintains high 3′-5′-cyclic adenosine monophosphate (cAMP) levels required for meiotic arrest in oocytes and CNS function. Ligand-activated G protein-coupled receptors (GPCRs) signal at the cell surface and are silenced by phosphorylation and β-arrestin recruitment upon endocytosis. Some GPCRs can also signal from endosomes following internalization. Little is known about the localization, signaling, and regulation of constitutively active GPCRs. We demonstrate herein that exogenously-expressed GPR3 localizes to the cell membrane and undergoes internalization in HEK293 cells. Inhibition of endocytosis increased cell surface-localized GPR3 and cAMP levels while overexpression of GPCR-Kinase 2 (GRK2) and β-arrestin-2 decreased cell surface-localized GPR3 and cAMP levels. GRK2 by itself is sufficient to decrease cAMP production but both GRK2 and β-arrestin-2 are required to decrease cell surface GPR3. GRK2 regulates GPR3 independently of its kinase activity since a kinase inactive GRK2-K220R mutant significantly decreased cAMP levels. However, GRK2-K220R and β-arrestin-2 do not diminish cell surface GPR3, suggesting that phosphorylation is required to induce GPR3 internalization. To understand which residues are targeted for desensitization, we mutated potential phosphorylation sites in the third intracellular loop and C-terminus and examined the effect on cAMP and receptor surface localization. Mutation of residues in the third intracellular loop dramatically increased cAMP levels whereas mutation of residues in the C-terminus produced cAMP levels comparable to GPR3 wild type. Interestingly, both mutations significantly reduced cell surface expression of GPR3. These results demonstrate that GPR3 signals at the plasma membrane and can be silenced by GRK2/β-arrestin overexpression. These results also strongly implicate the serine and/or threonine residues in the third intracellular loop in the regulation of GPR3 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号