首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we developed the new expression system PZn zitR, based on the regulatory signals (PZn promoter and zitR repressor) of the Lactococcus lactis zit operon, involved in Zn2+ high-affinity uptake and regulation. A PZn zitR-controlled expression vector was constructed, and expression regulation was studied with two reporter genes, uspnuc and lacLM; these genes encode, respectively, a protein derived from Staphylococcus aureus secreted nuclease and Leuconostoc mesenteroides cytoplasmic β-galactosidase. Nuclease and β-galactosidase activities of L. lactis MG1363 cells expressing either uspnuc or lacLM under the control of PZn zitR were evaluated on plates and quantified from liquid cultures as a function of divalent metal ion, particularly Zn2+, availability in the environment. Our results demonstrate that PZn zitR is highly inducible upon divalent cation starvation, obtained either through EDTA addition or during growth in chemically defined medium, and is strongly repressed in the presence of excess Zn2+. The efficiency of the PZn zitR expression system was compared to that of the well-known nisin-controlled expression (NICE) system with the same reporter genes cloned under either PZn zitR or PnisA nisRK control. lacLM induction levels reached with both systems were on the same order of magnitude, even though the NICE system is fivefold more efficient than the PZn zitR system. An even smaller difference or no difference was observed after 3 h of induction when nuclease was used as a reporter for Western blotting detection. PZn zitR proved to be a powerful expression system for L. lactis, as it is tightly controlled by the zinc concentration in the medium.  相似文献   

2.
Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and two general stress reporter strains (NZ9000::PhrcA-GFP and NZ9000::PgroES-GFP) enabling in vivo noninvasive monitoring of cellular fitness were constructed.  相似文献   

3.
Replacement of the leader sequence (LS) of the bacteriocin enterocin A (LSentA) by the signal peptides (SP) of the protein Usp45 (SPusp45), and the bacteriocins enterocin P (SPentP), and hiracin JM79 (SPhirJM79) permits the production, secretion, and functional expression of EntA by different lactic acid bacteria (LAB). Chimeric genes encoding the SPusp45, the SPentP, and the SPhirJM79 fused to mature EntA plus the EntA immunity genes (entA + entiA) were cloned into the expression vectors pNZ8048 and pMSP3545, under control of the inducible PnisA promoter, and in pMG36c, under control of the constitutive P32 promoter. The amount, antimicrobial activity, and specific antimicrobial activity of the EntA produced by the recombinant Lactococcus lactis, Enterococcus faecium, E. faecalis, Lactobacillus sakei and Pediococcus acidilactici hosts varied depending on the signal peptide, the expression vector, and the host strain. However, the antimicrobial activity and the specific antimicrobial activity of the EntA produced by most of the LAB transformants was lower than expected from their production. The supernatants of the recombinant L. lactis NZ9000 (pNZUAI) and L. lactis NZ9000 (pNZHAI), overproducers of EntA, showed a 1.2- to 5.1-fold higher antimicrobial activity than that of the natural producer E. faecium T136 against different Listeria spp.  相似文献   

4.
Lactic acid bacteria, such as Lactococcus lactis, are attractive hosts for the production of plant-bioactive compounds because of their food grade status, efficient expression, and metabolic engineering tools. Two genes from strawberry (Fragaria x ananassa), encoding an alcohol acyltransferase (SAAT) and a linalool/nerolidol synthase (FaNES), were cloned in L. lactis and actively expressed using the nisin-induced expression system. The specific activity of SAAT could be improved threefold (up to 564 pmol octyl acetate h−1 mg protein−1) by increasing the concentration of tRNA1Arg, which is a rare tRNA molecule in L. lactis. Fermentation tests with GM17 medium and milk with recombinant L. lactis strains expressing SAAT or FaNES resulted in the production of octyl acetate (1.9 μM) and linalool (85 nM) to levels above their odor thresholds in water. The results illustrate the potential of the application of L. lactis as a food grade expression platform for the recombinant production of proteins and bioactive compounds from plants.  相似文献   

5.
Methanol is considered as a potential hazard in the methanol-induced yeast expression of food-related enzymes. To increase the production efficiency of recombinant proteins in Pichia pastoris without methanol induction, a novel dual-plasmid system was constructed, for the first time, by a combining the strategies of genomic integration and episomal expression. To obtain a high copy number of the target gene, the autonomously replicating sequence derived from Kluyveromyces lactis (PARS) was used to construct episomal vectors carrying the constitutive promoters PGAP and PGCW14. In addition, an integrative vector carrying the PGCW14 promoter was constructed by replacing the PGAP promoter sequence with a partial PGCW14 promoter. Next, using xylanase XynA from Streptomyces sp. FA1 as the model enzyme, recombination strains were transformed with different combinations of integrating and episomal vectors that were constructed to investigate the changes in the protein yield. Results in shake flasks indicated that the highest enzyme yield was achieved when integrated PGAP and episomal PGCW14 were simultaneously transformed into the host strain. Meanwhile, the copy number of xynA increased from 1.14 ± 0.46 to 3.06 ± 0.35. The yield of XynA was successfully increased to 3925 U·mL−1 after 102 h of fermentation in a 3.6 L fermenter, which was 16.7-fold and 2.86-fold of the yields that were previously reported for the constitutive expression and methanol-induced expression of the identical protein, respectively. Furthermore, the high-cell-density fermentation period was shortened from 132 h to 102 h compared to that of methanol-induced system. Since the risk of methanol toxicity is removed, this novel expression system would be suitable for the production of proteins related to the food and pharmaceutical industries.  相似文献   

6.
Glutathione Protects Lactococcus lactis against Oxidative Stress   总被引:4,自引:0,他引:4       下载免费PDF全文
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to ~60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.  相似文献   

7.
A food-grade host/vector expression system for Lactococcus lactis was constructed using alanine racemase gene (alr) as the complementation marker. We obtained an alanine racemase auxotrophic mutant L. lactis NZ9000Δalr by double-crossover recombination using temperature-sensitive integration plasmid pG+host9 and a food-grade vector pALR with entirely lactococcal DNA elements, including lactococcal replicon, nisin-inducible promoter PnisA and the alr gene from Lactobacillus casei BL23 as a complementation marker. By using the new food-grade host/vector system, the green fluorescent protein and capsid protein of porcine circovirus type II were successfully overexpressed under the nisin induction. These results indicate that this food-grade host/vector expression system has application potential as an excellent antigen delivery vehicle, and is also suitable for the use in the manufacture of ingredients for the food industry.  相似文献   

8.
The extracellular Staphylococcus hyicus lipase was expressed under the control of different promoters in Lactococcus lactis and Bacillus subtilis. Its expression at high and moderate levels is toxic for the former and the latter hosts, respectively. In L. lactis, the lipase was expressed at a high level, up to 30% of the total cellular proteins, under the control of the inducible promoter PnisA. About 80% of the lipase remained associated with the cells. Close to half of this amount remained associated with the inner side of the cytoplasmic membrane as unprocessed pre-pro-lipase. The other half was trapped by the cell wall and partially degraded at the N-terminal end. This result suggests that extracellular proteases degrade the lipase. Surprisingly, the kinetics and the pattern of lipase degradation were different in the two L. lactis subspecies, L. lactis subsp. cremoris and L. lactis subsp. lactis. The extracellular proteolytic systems that degrade lipase are thus different in these closely related subspecies. The incorrect export of the lipase is not due to an inappropriate leader peptide but may be due to an inefficiency of several steps of lipase secretion. We propose that (i) the S. hyicus lipase may require a special accessory system to be correctly exported or (ii) the kinetics of lipase synthesis may be a critical factor for proper folding.  相似文献   

9.
The ability of caseins to fulfill the amino acid requirements of Lactococcus lactis for growth was studied as a function of the type of cell envelope proteinase (PI versus PIII type). Two genetically engineered strains of L. lactis that differed only in the type of proteinase were grown in chemically defined media containing αs1-, β-, and κ-caseins (alone or in combination) as the sources of amino acids. Casein utilization resulted in limitation of the growth rate, and the extent of this limitation depended on the type of casein and proteinase. Adding different mixtures of essential amino acids to the growth medium made it possible to identify the nature of the limitation. This procedure also made it possible to identify the amino acid deficiency which was growth rate limiting for L. lactis in milk (S. Helinck, J. Richard, and V. Juillard, Appl. Environ. Microbiol. 63:2124–2130, 1997) as a function of the type of proteinase. Our results were compared with results from previous in vitro experiments in which casein degradation by purified proteinases was examined. The results were in agreement only in the case of the PI-type proteinase. Therefore, our results bring into question the validity of the in vitro approach to identification of casein-derived peptides released by a PIII-type proteinase.  相似文献   

10.
Despite high similarity in sequence and catalytic properties, the l-lactate dehydrogenases (LDHs) in lactic acid bacteria (LAB) display differences in their regulation that may arise from their adaptation to different habitats. We combined experimental and computational approaches to investigate the effects of fructose 1,6-bisphosphate (FBP), phosphate (Pi), and ionic strength (NaCl concentration) on six LDHs from four LABs studied at pH 6 and pH 7. We found that 1) the extent of activation by FBP (Kact) differs. Lactobacillus plantarum LDH is not regulated by FBP, but the other LDHs are activated with increasing sensitivity in the following order: Enterococcus faecalis LDH2 ≤ Lactococcus lactis LDH2 < E. faecalis LDH1 < L. lactis LDH1 ≤ Streptococcus pyogenes LDH. This trend reflects the electrostatic properties in the allosteric binding site of the LDH enzymes. 2) For L. plantarum, S. pyogenes, and E. faecalis, the effects of Pi are distinguishable from the effect of changing ionic strength by adding NaCl. 3) Addition of Pi inhibits E. faecalis LDH2, whereas in the absence of FBP, Pi is an activator of S. pyogenes LDH, E. faecalis LDH1, and L. lactis LDH1 and LDH2 at pH 6. These effects can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modeled in protonation states corresponding to pH 6 and pH 7. Overall, the results show a subtle interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDHs of different LABs.  相似文献   

11.
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin.This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR.NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.  相似文献   

12.
13.
Potential use of Lactococcus lactis (L. lactis) as a heterologous protein expression host as well as for delivery of multiple therapeutic proteins has been investigated extensively using Nisin Inducible Controlled Expression (NICE) system. Optimum inducible expression of heterologous protein by NICE system in L. lactis depends on multiple factors. To study the unexplored role of factors affecting heterologous protein expression in L. lactis using NICE, the present study outlines the optimization of various key parameters such as inducer concentration, host’s proteases and precipitating agent using Outer membrane protein A (OmpA). For efficient expression and secretion of OmpA, pSEC:OmpA vector was successfully constructed. To circumvent the troubles encountered during detection of expressed OmpA, the precipitating agent was switched from TCA to methanol. Nevertheless, detection was achieved accompanied by degraded protein products. Speculating the accountability of observed degradation at higher inducer concentration, different nisin concentrations were evaluated. Lower nisin concentrations were found desirable for optimum expression of OmpA. Consistently observed degradation was eliminated by incorporation of protease inhibitor cocktail which inhibits intracellular proteases and expression in VEL1153 (NZ9000 ΔhtrA) strain which inhibits extracellular protease leading to optimum expression of OmpA. Versatility and complexity of NICE system in L. lactis requires fine-tuning of target protein specific parameters for optimum expression.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-015-0556-2) contains supplementary material, which is available to authorized users.  相似文献   

14.
K88 (F4) fimbrial adhesin, FaeG, was expressed extracellularly in Lactococcus lactis using a nisin-controlled gene expression system. The antibody response and protective efficacy of the recombinant bacteria (L. lactis [spNZ8048-faeG]) against live enterotoxigenic E. coli (ETEC) C83549 challenge were evaluated in ICR mice. Mice vaccinated with L. lactis [spNZ8048-faeG] had a significantly increased antigen-specific IgG level in the serum and decreased mortality rate (P < 0.05) compared with the control. This indicates that oral immunization of L. lactis [spNZ8048-faeG] can induce an immune-response protection upon challenge with live ETEC in ICR mice. An erratum to this article can be found at  相似文献   

15.
The genetic improvement of Lactococcus lactis is a matter of biotechnological interest in the food industry and in the pharmaceutical and medical fields. However, to construct a food-grade delivery system, both the presence of antibiotic markers or plasmid sequences should be avoided and the maintenance and expression of the cloned gene should be guaranteed. The objective of this work was to produce crossover mutants of L. lactis with a reporter gene under the control of an inducible promoter in order to evaluate the level of gene expression. We utilized a nuclease gene of Staphylococcus aureus as a reporter gene, P nisA as the nisin-inducible promoter, a non-essential gene involved in histidine biosynthesis of L. lactis as the site for homologous recombination, and pRV300 as a suicide vector for the genomic integration in L. lactis NZ9000. Single- and double-crossover mutants were identified by genotype and phenotype. Relative to episomal transformants of L. lactis, the level of expression of the heterologous protein after nisin induction was similar in the crossover mutants, suggesting that a single copy of the heterologous gene can be used to produce the protein of interest.  相似文献   

16.
17.

Background

Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a Gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested.

Methodology/Principal Findings

The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system.

Conclusions/Significance

Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.  相似文献   

18.
We present a tool for repetitive, marker-free, site-specific integration in Lactococcus lactis, in which a nonreplicating plasmid vector (pKV6) carrying a phage attachment site (attP) can be integrated into a bacterial attachment site (attB). The novelty of the tool described here is the inclusion of a minimal bacterial attachment site (attBmin), two mutated loxP sequences (lox66 and lox71) allowing for removal of undesirable vector elements (antibiotic resistance marker), and a counterselection marker (oroP) for selection of loxP recombination on the pKV6 vector. When transformed into L. lactis expressing the phage TP901-1 integrase, pKV6 integrates with high frequency into the chromosome, where it is flanked by attL and attR hybrid attachment sites. After expression of Cre recombinase from a plasmid that is not able to replicate in L. lactis, loxP recombinants can be selected for by using 5-fluoroorotic acid. The introduced attBmin site can subsequently be used for a second round of integration. To examine if attP recombination was specific to the attB site, integration was performed in strains containing the attB, attL, and attR sites or the attL and attR sites only. Only attP-attB recombination was observed when all three sites were present. In the absence of the attB site, a low frequency of attP-attL recombination was observed. To demonstrate the functionality of the system, the xylose utilization genes (xylABR and xylT) from L. lactis strain KF147 were integrated into the chromosome of L. lactis strain MG1363 in two steps.  相似文献   

19.
Tripeptidases from Lactococcus lactis subsp. lactis (L9PepTR), L. lactis subsp. cremoris (L6PepTR), and L. lactis subsp. hordniae (hTPepTR) were cloned, overexpressed, purified, and characterized. Although these enzymes contained three to seven naturally occurring amino acid differences, both metal-binding and catalytic sites were highly conserved. The kcat values of hTPepTR were approximately 1.5- to 2-fold higher than those of L9PepTR, while, for L6PepTR, they were approximately 0.8- to 1.4-times the L9PepTR values. The Km of tripeptidase from subsp. lactis (L9PepTR) was considerably larger when glycine was the amino acid located at both the N- and C-terminus of the peptide substrate. In addition, the Km values of L9PepTR increased in the following order for YGG, LGG, FGG, SGG, and α-aminoisobutyrylglycylglycine, while the kcat/Km decreased in the same order. These results suggest that the dipole moment and steric hindrance of the N-terminal amino acid side chain may be the most important factors controlling substrate specificity.  相似文献   

20.
Recombinant Lactococcus lactis strains based on the P170 expression system were developed for hyaluronan (HA) production, by incorporating genes from the has operon of Streptococcus zooepidemicus and compared with nisin-inducible recombinant L. lactis strains containing the hasABC and hasABD constructs. It was found across all batch and fed-batch experimental studies that HA concentration and molecular weight (MW) were higher for the P170 expression systems than the corresponding NICE-based strains. The highest hyaluronan MW was obtained for all constructs in batch studies at 60 g/L initial glucose concentration, the highest being 2.94 MDa for the P170 strains with hasABC construct (L. lactis APJ3). In fed-batch studies with constant feed rate, the L. lactis APJ3 gave better HA yield (0.03 g/g) than the NICE-based strain. A higher hyaluronan MW was obtained for all strains in pulse fed-batch compared to constant feed experiments, the highest being 2.52 MDa for L. lactis APJ3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号