首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wild-type and starchless Arabidopsis thaliana mutant seedlings(TC7) were grown and fixed in the microgravity environment ofa U.S. Space Shuttle spaceflight. Computer image analysis oflongitudinal sections from columella cells suggest a differentplastid positioning mechanism for mutant and wild-type in theabsence of gravity. (Received September 24, 1996; Accepted January 21, 1997)  相似文献   

2.
MOORE  RANDY 《Annals of botany》1989,64(3):271-277
Primary roots of a starchless mutant of Arabidopsis thalianaL. are strongly graviresponsive despite lacking amyloplastsin their columella cells. The ultrastructures of calyptrogenand peripheral cells in wild-type as compared to mutant seedlingsare not significantly different. The largest difference in cellulardifferentiation in caps of mutant and wild-type roots is therelative volume of plastids in columella cells. Plastids occupy12.3% of the volume of columella cells in wild-type seedlings,but only 3.69% of columella cells in mutant seedlings. Theseresults indicate that: (1) amyloplasts and starch are not necessaryfor root graviresponsiveness; (2) the increase in relative volumeof plastids that usually accompanies differentiation of columellacells is not necessary for root graviresponsiveness; and (3)the absence of starch and amyloplasts does not affect the structureof calyptrogen (i.e. meristematic) and secretory (i.e. peripheral)cells in root caps. These results are discussed relative toproposed models for root gravitropism. Arabidopsis thaliana, gravitropism (root), plastids, root cap, stereology, ultrastructure  相似文献   

3.
Microsporogenesis has been examined in wild-type Arabidopsis thaliana and the nuclear male-sterile mutant BM3 by cytochemical staining. The mutant lacks adenine phosphoribosyltransferase, an enzyme of the purine salvage pathway that converts adenine to AMP. Pollen development in the mutant began to diverge from wild type just after meiosis, as the tetrads of microspores were released from their callose walls. The first indication of abnormal pollen development in the mutant was a darker staining of the microspore wall due to an incomplete synthesis of the intine. Vacuole formation was delayed and irregular in the mutant, and the majority of the mutant microspores failed to undergo mitotic divisions. Enzyme activities of alcohol dehydrogenase and esterases decreased in the mutant soon after meiosis and were undetectable in mature pollen grains of the mutant. RNA accumulation was also diminished. These results are discussed in relation to the possible role(s) of adenine salvage in pollen development.  相似文献   

4.
A mutant of Arabidopsis thaliana lacking ADPglucose pyrophosphorylase activity (EC 2.7.7.27) was isolated (from a mutagenized population of plants) by screening for the absence of leaf starch. The mutant grows as vigorously as the wild type in continuous light but more slowly than the wild type in a 12 hours light/12 hours dark photoperiod. Genetic analysis showed that the deficiency of both starch and ADPglucose pyrophosphorylase activity were attributable to a single, nuclear, recessive mutation at a locus designated adg1. The absence of starch in the mutant demonstrates that starch synthesis in the chloroplast is entirely dependent on a pathway involving ADPglucose pyrophosphorylase. Analysis of leaf extracts by two-dimensional polyacrylamide gel electrophoresis followed by Western blotting experiments using antibodies specific for spinach ADPglucose pyrophosphorylase showed that two proteins, present in the wild type, were absent from the mutant. The heterozygous F1 progeny of a cross between the mutant and wild type had a specific activity of ADPglucose pyrophosphorylase indistinguishable from the wild type. These observations suggest that the mutation in the adg1 gene in TL25 might affect a regulatory locus.  相似文献   

5.
We studied the effects of cytokinin benzyladenine (BA) and ethylene on the senescence in the dark of detached leaves of Arabidopsis thaliana(L.) Heynh wild-type plants and theeti-5mutant, which was described in the literature as the ethylene-insensitive one. Leaf senescence was assessed from a decrease in the chlorophyll content. The content of endogenous cytokinins (zeatin and zeatin riboside) was estimated by the ELISA technique. We demonstrated that the content of endogenous cytokinins in the leaves of the three-week-old eti-5mutants exceeded that of the wild-type leaves by an order of magnitude; in the five-week-old mutants, by several times; and in the seven-week-old plants, the difference became insignificant. Due to the excess of endogenous cytokinins in the three–five-week-old mutant leaves, their senescence in the dark was retarded and exogenous cytokinin affected these leaves to a lesser extent. The seven-week-old mutant and the wild-type leaves, which contained practically similar amounts of endogenous cytokinins, did not differ in these indices. Thus, the level of endogenous cytokinins determined the rate of senescence and the leaf response to cytokinin treatment. Ethylene accelerated the senescence of detached wild-type leaves. Ethylene action increased with increasing its concentration from 0.1 to 100 l/l. BA (10–6M) suppressed ethylene action. Similar data were obtained for the eti-5mutant leaves. We therefore suggest that the mutant leaves comprised the pathways of the ethylene signal reception and transduction, which provided for the acceleration of their senescence.  相似文献   

6.
A mutant of Arabidopsis thaliana (L.) Heynh. which lacks leaf starch was isolated by screening for plants which did not stain with iodine. The starchless phenotype, confirmed by quantitative enzymic analysis, is caused by a single recessive nuclear mutation which results in a deficiency of the chloroplast isozyme of phosphoglucomutase. When grown in a 12-h photoperiod, leaves of the wild-type accumulated substantial amounts of starch but lower levels of soluble sugars. Under these conditions, the mutant accumulated relatively high levels of soluble sugars. Rates of growth and net photosynthesis of the mutant and wild-type were indistinguishable when the plants were grown in constant illumination. However, in a short photoperiod, the growth of the mutant was severely impaired, the rate of photosynthesis was depressed relative to the wild-type, and the rate of dark respiration, which was high following the onset of darkness, exhibited an uncharacteristic decay throughout the dark period. The altered control of respiration by the mutant, which may be related to the relatively high levels of soluble carbohydrate that accumulate in the leaf and stem tissue, is believed to be partially responsible for the low growth rate of the mutant in short days. The depressed photosynthetic capacity of the mutant may also reflect a metabolic adaptation to the accumulation of high levels of soluble carbohydrate which mimics the effects of alterations in source/sink ratio. The activities of sucrose phosphate synthase and acid invertase are significantly higher in the mutant than in the wild-type whereas ADP-glucose pyrophosphorylase activity is lower. This suggests that the activities of these enzymes may be modulated in response to metabolite concentrations or flux through the pathways.  相似文献   

7.
The activity of chlorophyllase in wild type (WT) was higher than in ethylene insensitive mutant (eti 5) of Arabidopsis thaliana (L.) Heynh plants during the vegetative period. Chlorophyll content in eti 5 leaves was higher than in WT but the difference decreased by the end of the experimental period.  相似文献   

8.
CO2 uptake rate, chlorophyll fluorescence, and 830-nm absorbance were measured in wild-type (wt) Nicotiana sylvestris (Speg. et Comes) and starchless mutant NS 458 leaves at different light intensities and CO2 concentrations. Initial slopes of the relationships between CO2 uptake and light and CO2 were similar, but the maximum rate at CO2 and light saturation was only 30% in the mutant compared with the wt. O2 enhancement of photosynthesis at CO2 and light saturation was relatively much greater in the mutant than in the wt. In 21% O2, the electron transport rate (ETR) calculated from fluorescence peaked near the beginning of the CO2 saturation of photosynthesis. With the further increase of CO2 concentration ETR remained nearly constant or declined a little in the wt but drastically declined in the mutant. Absorbance measurements at 830 nm indicated photosystem I acceptor side reduction in both plants at saturating CO2 and light. Assimilatory charge (postillumination CO2 uptake) measurements indicated trapping of chloroplast inorganic phosphate, supposedly in hexose phosphates, in the mutant. It is concluded that starch synthesis gradually substitutes for photorespiration as electron acceptor with increasing CO2 concentration in the wt but not in the mutant. It is suggested that starch synthesis is co-controlled by the activity of the chloroplast fructose bisphosphatase.  相似文献   

9.
Cambium samples of Thuja occidentalis L. were collected at five different times, covering spring reactivation and early and late resting period, and used for sucrose determinations. Fragments of the different cell types - xylem ray, cambial initials, sieve-elements including phloem parenchyma cells, phloem ray - were dissected from freeze-dried radial sections and analyzed individually. Results show large differences in sucrose concentrations in the different cell types of the cambial layer. In addition, each cell type also shows seasonal fluctuations in sucrose content, whose amplitudes and patterns of variation appear specific for the particular cell type.  相似文献   

10.
Activities of acid and alkaline invertases and sucrose synthase were determined in roots and nodules of lentil at various stages of development. Alkaline invertase and sucrose synthase were both involved in sucrose metabolism in the nodule cytosol, but there was only a small amount of acid invertase present. Activity of sucrose metabolizing enzymes in roots was significantly less than that observed in the nodules. Amongst sugars, sucrose was found to be the main component in the host cytosol. Lentil neutral invertase (LNI) was partially purified from nodules at 50 days after sowing (DAS). Two forms of invertase were identified, i.e., a major form of 71 kDa which was taken for enzyme characterization and a minor form of 270 kDa which was not used for further studies. The purified enzyme exhibited typical hyperbolic saturation kinetics for sucrose hydrolysis. It had a Km of 11.0 to 14.0 mM for sucrose depending upon the temperature, a pH optimum of 6.8 and an optimum temperature of 40 °C. Compared with raffinose and stachyose, sucrose was better substrate for LNI. The enzyme showed no significant hydrolysis of maltose and p-nitrophenyl--D-glucopyranoside, showing its true -fructosidase nature. LNI is completely inhibited by HgCl2, MnCl2 and iodoacetamide but not by CaCl2, MgCl2 or BaCl2.  相似文献   

11.
The thyA gene which codes for thymidylate synthase has been cloned and sequenced from the wild-type Shigella flexneri Y strain SH4 and a thyA mutant TSF21 after amplifying the gene by polymerase chain reaction (PCR). The nucleotide sequence revealed 98% homology to the E. coli K-12 thyA gene. The sequence of the wild-type thyA gene of Shigella flexneri Y was identical with that of the thyA mutant except that the residue T at position 345 was replaced by residue A in the thyA mutant. This change would cause a predicted amino acid substitution of leucine at position 44 in the polypeptide product of the wild type by glutamine in the mutant. Thus, Leu44 may be critical in enzymatic activity of the thyA gene product thymidylate synthase.  相似文献   

12.
13.
14.
Mutations of presenilin (PS)-1, an endoplasmic reticulum/Golgi transmembrane protein, have been associated with early-onset familial Alzheimer's disease (FAD). In mammalian brain, PS1 exists primarily as its processed fragments; however, the role of this cleavage event in PS1 function remains unclear. Although some investigators have shown that mutant PS1 processing is unaltered (with the exception of PS1-deltaE9, which lacks the cleavage site) in stably transfected cells and PS1-FAD transgenic mice, other investigators have reported altered FAD mutant PS1 and PS2 protein processing in transiently transfected cells and human FAD patients. The present study uses recombinant replication-defective adenoviral vectors to transiently express wild-type (WT) or mutant PS1 in various cells, including primary cultured hippocampal neurons. We show that in contrast to PS1-WT, overexpression of mutant PS1 results in an increased ratio of mutant holoprotein to endoproteolytic products that is dependent on cell type and differentiation state. In addition, mutant PS1 overexpression leads to an increase in caspase-type protease derived fragments above that seen with PS1-WT overexpression. Furthermore, overexpression of at least one mutant significantly alters the processing of coexpressed PS1-WT, suggesting that mutant PS1 may affect PS1-WT function. These findings suggest that a defect in PS1 holoprotein stability may be a general defect seen in cells expressing mutant PS1, especially neuronal cells, and may play a critical role in the pathogenesis of FAD.  相似文献   

15.
自然条件下生长的菠萝植株,其叶片的PEP羧激酶的脱羧与可逆羧化活性于中午12时达最大值。脱羧/羧化比值在上午明显高于下午和晚上。脱羧反应底物OAA含量于夜间增高,至次日早晨6时最高,随后下降。白天的OAA/Mal值高于夜间。参与Mal及OAA形成转化的PEPC和MDH活性的昼夜变化与PEP羧激酶(PEPCK)活性的图式相似。PEP羧激酶脱羧反应的另一底物ATP在夜间0~6时内处于低水平,白天9~15时内则显著增高。  相似文献   

16.
17.
18.
The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.  相似文献   

19.
20.

Background

By mechanisms yet to be discerned, the co-expression of high levels of wild-type human superoxide dismutase 1 (hSOD1) with variants of hSOD1 encoding mutations linked familial amyotrophic lateral sclerosis (fALS) hastens the onset of motor neuron degeneration in transgenic mice. Although it is known that spinal cords of paralyzed mice accumulate detergent insoluble forms of WT hSOD1 along with mutant hSOD1, it has been difficult to determine whether there is co-deposition of the proteins in inclusion structures.

Methodology/Principal Findings

In the present study, we use cell culture models of mutant SOD1 aggregation, focusing on the A4V, G37R, and G85R variants, to examine interactions between WT-hSOD1 and misfolded mutant SOD1. In these studies, we fuse WT and mutant proteins to either yellow or red fluorescent protein so that the two proteins can be distinguished within inclusions structures.

Conclusions/Significance

Although the interpretation of the data is not entirely straightforward because we have strong evidence that the nature of the fused fluorophores affects the organization of the inclusions that form, our data are most consistent with the idea that normal dimeric WT-hSOD1 does not readily interact with misfolded forms of mutant hSOD1. We also demonstrate the monomerization of WT-hSOD1 by experimental mutation does induce the protein to aggregate, although such monomerization may enable interactions with misfolded mutant SOD1. Our data suggest that WT-hSOD1 is not prone to become intimately associated with misfolded mutant hSOD1 within intracellular inclusions that can be generated in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号