首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species. We test the hypothesis that host geographic range area, distribution, population genetic structure, migratory behavior, International Union for Conservation of Nature and Natural Resources (IUCN) threat status, body mass, and colony size, are associated with known viral richness in bats. We analyze host traits and viral richness in a generalized linear regression model framework, and include a correction for sampling effort and phylogeny. We find evidence that sampling effort, IUCN status, and population genetic structure correlate with observed viral species richness in bats, and that these associations are independent of phylogeny. This study is an important first step in understanding the mechanisms that promote viral richness in reservoir species, and may aid in predicting the emergence of viral zoonoses from bats.  相似文献   

2.
Echolocating bats construct an auditory world sequentially by analyzing successive pulse-echo pairs. Many other mammals rely upon a visual world, acquired by sequential foveal fixations connected by visual gaze saccades. We investigated the scanning behavior of bats and compared it to visual scanning. We assumed that each pulse-echo pair evaluation corresponds to a foveal fixation and that sonar beam movements between pulses can be seen as acoustic gaze saccades. We used a two-dimensional 16 microphone array to determine the sonar beam direction of succeeding pulses and to characterize the three dimensional scanning behavior in the common pipistrelle bat (Pipistrellus pipistrellus) flying in the field. We also used variations of signal amplitude of single microphone recordings as indicator for scanning behavior in open space. We analyzed 33 flight sequences containing more than 700 echolocation calls to determine bat positions, source levels, and beam aiming. When searching for prey and orienting in space, bats moved their sonar beam in all directions, often alternately back and forth. They also produced sequences with irregular or no scanning movements. When approaching the array, the scanning movements were much smaller and the beam was moved over the array in small steps. Differences in the scanning pattern at various recording sites indicated that the scanning behavior depended on the echolocation task that was being performed. The scanning angles varied over a wide range and were often larger than the maximum angle measurable by our array. We found that echolocating bats use a “saccade and fixate” strategy similar to vision. Through the use of scanning movements, bats are capable of finding and exploring targets in a wide search cone centered along flight direction.  相似文献   

3.
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.  相似文献   

4.
Two bat families, the leaf-nosed (Phyllostomidae) and fruit bats (Pteropodidae), have independently evolved the ability to consume plant resources. However, despite their similar ages, species richness and the strong selective pressures placed on the evolution of skull shape by plant-based foods, phyllostomids display more craniofacial diversity than pteropodids. In this study, we used morphometrics to investigate the distribution of palate variation and the evolution of palate diversity in these groups. We focused on the palate because evolutionary alterations in palate morphology are thought to underlie much feeding specialization in bats. We hypothesize that the distribution of palate variation differs in phyllostomids and pteropodids, and that the rate of palate evolution is higher in phyllostomids than pteropodids. The results suggest that the overall level of palate integration is higher in adult populations of pteropodids than phyllostomids but that the distribution of palate variation is otherwise generally conserved among phyllostomids and pteropodids. Furthermore, the results are consistent with these differences in palate integration likely having a developmental basis. The results also suggest that palate evolution has occurred significantly more rapidly in phyllostomids than pteropodids. These findings are consistent with a scenario in which the greater integration of the pteropodid palate has limited its evolvability.  相似文献   

5.
A comparative electrophoretic assay of lactate dehydrogenase (EC 1.1.1.27) isozymes has been carried out in the homogenates of the tissues of cardiac and skeletal muscles, liver, kidneys and lungs of five species of hibernating bats of the order Chiroptera: the northern bat Eptesicus nilssonii Keyserling and Blasius, the brown long-eared bat Plecotus auritus L., Brandt’s bat Myotis brandtii Eversmann, Daubenton’s bat Myotis daubentonii Kuhl, and the whiskered bat Myotis mystacinus Kuhl, which live in Karelia near the northern border of their distribution area. High contents of aerobic lactate dehydrogenase 1 and lactate dehydrogenase 2 isozymes have been detected in the skeletal muscle of the studied bats. The lactate dehydrogenase isozyme spectra of the tissues of kidneys and skeletal muscles from the smaller representatives of bats (the whiskered and Brandt’s bats) contained the highest content of H subunits among the studied species. In contrast, the predominance of M subunits has been revealed in the lactate dehydrogenase isozyme spectra of the kidneys of the northern and the brown long-eared bats. The discovered interspecies differences are discussed in the context of the adaptation of bats to hibernation.  相似文献   

6.
New World leaf-nosed bats (Family Phyllostomidae) display incredible craniofacial diversity that is associated with their broad range of dietary preferences. The short and broad palates of highly frugivorous bats are functionally linked to high bite forces, and the long and narrow palates of nectarivorous bats to flower feeding. Although the functional correlates and evolutionary history of shape variation in phyllostomid palates are beginning to be understood, the specific developmental processes that govern palate diversification remain unknown. To begin to resolve this issue, this study quantified palate morphology in seven phyllostomid species from a range of developmental stages and in adults. This sample includes species with short and broad, long and narrow, and intermediate palate shapes, and thereby covers the range of palate shapes displayed by phyllostomids. Results indicate that while initial palate shape (i.e., width vs. length) varies among species, the pattern of this variation does not match that observed in adults. In contrast, the relative growth of palate width and length in developing phyllostomids and the ratio of these axes in adults are significantly correlated. These and other results suggest that evolutionary alterations in patterns of palate growth have governed the diversification of palate shapes in adult phyllostomids. This implies that the diverse palate shapes of phyllostomids are the result of relatively subtle evolutionary changes in later rather than earlier development events.  相似文献   

7.
蝙蝠回声定位与捕食对策的研究   总被引:10,自引:3,他引:7  
蝙蝠的回声定位可以在相当程度上反映出其捕食对策以及栖息环境的特点,回声定位在强度、持续时间及频率等方面的变化模式显示出这类声学信号的多样性,而这种多样性与蝙蝠的捕食对策相关。这方面的研究在国际上历经几十年不衰,然而,在我国,蝙蝠回声定位的研究基本上是空白?..  相似文献   

8.
Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.  相似文献   

9.
Although the use of modified roosts has been reported in more than 20 species of bats in the tropics, comparative studies of the roosting ecology of congeneric tent‐roosting species are notably lacking. In the Paleotropics, this unique behavior has been described in two species belonging to the genus, Cynopterus: C. sphinx and C. brachyotis. However, it is not known whether tent roosting is an essential component of their roosting ecology, or whether the behavior is found in other members of the genus. In this study we characterize the roosting ecology of four sympatric species of Cynopterus in peninsular Malaysia and use these data to address two main questions. (1) Do all four species use modified roosts and, in those that do, is tent‐roosting obligate or opportunistic? (2) Do species pairs overlap in roost preferences and roosting habitat and, if so, is there evidence for interspecific interactions in relation to these resources? We radio‐tracked bats at two floristically distinct sites and located a total of 249 roosts. Interspecific roost niche overlap was minimal at both sites and we found no evidence for interspecific competition for roost resources at the local level. Species differences in roosting ecology were defined primarily by spatial separation of roosting habitats and secondarily by within‐habitat differences in roost selection. Importantly, we found that although periodic use of modified roosts was a characteristic shared by all four species, most roosts were unmodified, indicating that tent roosting is a facultative behavior in Malaysian Cynopterus.  相似文献   

10.
New and previously published data on the distribution of 12 bat species in the Cis-Urals and South Urals (Republic of Bashkortostan) are summarized. Data on their subspecies status are given. There is a need to clarify the taxonomic status of the pipistrelle bats Pipistrellus pipistrellus/pygmaeus. In terms of composition, the bat fauna of the Republic of Bashkortostan is a variant of the Central European fauna. It was revealed that the territory in question marks the eastern limits of distribution of Nyctalus leisleri and P. pipistrellus/pygmaeus. An important feature of the territory of Bashkortostan is the presence of places of mass wintering of bats of natural origin: more than 980 karst caves used by bats not only in winter, but also during the period of activity. According to the results of captures in 14 caves, data on the frequency and relative abundance of sedentary bat species in the Republic of Bashkortostan are given.  相似文献   

11.
New data are presented on the ectoparasite fauna of several species of vesper and horseshoe bats (Chiroptera: Vespertilionidae, Rhinolophidae) of the Crimean Peninsula. In the studied territory, 11 species of ectoparasites (mites and insects) have been collected from 6 bat species; 2 of the ectoparasite species were new to Crimea. Findings of gamasid mites Ichoronyssus scutatus on an unusual host are discussed. The gamasid mite Spinturnix emarginatus (Acari: Mesostigmata: Gamasina) is described for the territory of Russia for the first time.  相似文献   

12.
Identifying nonrandom clade diversification is a critical first step toward understanding the evolutionary processes underlying any radiation and how best to preserve future phylogenetic diversity. However, differences in diversification rates have not been quantitatively assessed for the majority of groups because of the lack of necessary analytical tools (e.g., complete species-level phylogenies, estimates of divergence times, and robust statistics which incorporate phylogenetic uncertainty and test appropriate null models of clade growth). Here, for the first time, we investigate diversification rate heterogeneity in one of the largest groups studied thus far, the bats (Mammalia: Chiroptera). We use a recent, robust statistical approach (whole-tree likelihood-based relative rate tests) on complete dated species-level supertree phylogenies. As has been demonstrated previously for most other groups, among-lineage diversification rate within bats has not been constant. However, we show that bat diversification is more heterogeneous than in other mammalian clades thus far studied. The whole-tree likelihood-based relative rates tests suggest that clades within the families Phyllostomidae and Molossidae underwent a number of significant changes in relative diversification rate. There is also some evidence for rate shifts within Pteropodidae, Emballonuridae, Rhinolophidae, Hipposideridae, and Vespertilionidae, but the significance of these shifts depends on polytomy resolution within each family. Diversification rate in bats has also not been constant, with the largest diversification rate shifts occurring 30-50 million years ago, a time overlapping with the greatest number of shifts in flowering plant diversification rates.  相似文献   

13.
Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.  相似文献   

14.
15.
Frugivorous and nectarivorous bats fuel their metabolism mostly by using carbohydrates and allocate the restricted amounts of ingested proteins mainly for anabolic protein syntheses rather than for catabolic energy production. Thus, it is possible that genes involved in protein (amino acid) catabolism may have undergone relaxed evolution in these fruit- and nectar-eating bats. The tyrosine aminotransferase (TAT, encoded by the Tat gene) is the rate-limiting enzyme in the tyrosine catabolic pathway. To test whether the Tat gene has undergone relaxed evolution in the fruit- and nectar-eating bats, we obtained the Tat coding region from 20 bat species including four Old World fruit bats (Pteropodidae) and two New World fruit bats (Phyllostomidae). Phylogenetic reconstructions revealed a gene tree in which all echolocating bats (including the New World fruit bats) formed a monophyletic group. The phylogenetic conflict appears to stem from accelerated TAT protein sequence evolution in the Old World fruit bats. Our molecular evolutionary analyses confirmed a change in the selection pressure acting on Tat, which was likely caused by a relaxation of the evolutionary constraints on the Tat gene in the Old World fruit bats. Hepatic TAT activity assays showed that TAT activities in species of the Old World fruit bats are significantly lower than those of insectivorous bats and omnivorous mice, which was not caused by a change in TAT protein levels in the liver. Our study provides unambiguous evidence that the Tat gene has undergone relaxed evolution in the Old World fruit bats in response to changes in their metabolism due to the evolution of their special diet.  相似文献   

16.
17.
Quaternary climate change has been hypothesized to have played a significant role in driving diversification rates in a variety of taxa. We test the hypothesis of increased rates of diversification during the Quaternary in nine groups of New World bats (Chiroptera). The fit of six models of diversification was determined for each group. None experienced an increase in net diversification, rejecting the Quaternary hypothesis. Instead, four groups experienced constant net diversification rates, suggesting no Quaternary climate change impact. Five groups are evolving under a density-dependent model of diversification, suggesting climate cycles may have reduced rates initiated during the Pliocene or late Miocene. The distribution of divergences between sister taxa is consistent with results obtained from avian lineages experiencing declining rates of Quaternary diversification, further discrediting this often invoked hypothesis. Our results suggest that Quaternary climate change did not increase diversification rates in New World bats.  相似文献   

18.
何淑艳  敖磊  李娜  谷晓明 《四川动物》2007,26(3):520-524
对贵州5种蝙蝠科蝙蝠的部分线粒体细胞色素氧化酶亚基ⅠDNA序列进行了测定,并结合从Genbank获得的爪哇伏翼的相应序列,以Pteropus dasymallus,P.scapulatus,Rousettus aegyptiacus为外群,运用贝叶斯法(Bayes-ian),最大似然法(Maximum Likelihood,ML)分析了这6种蝙蝠科蝙蝠的分子系统进化关系。结果表明:在贝叶斯,ML树中,这6种蝙蝠科的蝙蝠可分为3个分支:亚洲长翼蝠是第1个独立出来的分支;白腹管鼻蝠是继亚洲长翼蝠之后第2个分离出来的分支;第3个分支又分为两支,一支由大鼠耳蝠和小鼠耳蝠组成,另一支由南蝠和爪哇伏翼组成,支持将这4种蝙蝠同归于蝙蝠亚科的结论,从一定程度上否定了鼠耳蝠属和管鼻蝠亚科之间的姐妹类群关系,也不支持将鼠耳属提升为亚科。  相似文献   

19.
Reduced-impact logging (RIL) represents a viable option for sustainable use of Neotropical lowland forests while minimizing negative effects on local biodiversity. Many Neotropical bats of the family Phyllostomidae provide ecosystem services associated with pollination and seed dispersal that promote the regeneration of disturbed areas; therefore, effects of RIL on these species is of particular concern. We determined patterns of temporal activity, degree of temporal overlap of activity, and dispersion in peaks of activity for seven abundant species of frugivorous bat in Tapajós National Forest, Pará, Brazil. In addition, we evaluated the effects of RIL at a harvest level of 18.7 m3/ha and habitat physiognomy on temporal patterns of activity for these species. Bats were surveyed for four nights at each of 96 sites for a total sampling effort of 64,512 net-m-h. Sites were distributed among four experimental blocks, two blocks of unlogged forest and two blocks of forest subjected to RIL. Half of the sites in each management type were in forest gaps and half were in closed-canopy forest. In general, species exhibited similar patterns of activity, and greater than expected temporal overlap in activity among species. RIL and forest physiognomy had little effect on activity patterns of species. RIL in Amazonia removes fewer trees than do naturally occurring treefalls and such changes in habitat structure do not alter activity patterns of frugivorous bats. Evidence suggests that RIL does not have an appreciable adverse effect on frugivorous bats in Amazonia.  相似文献   

20.
acta ethologica - A lunar phobia is a behavioral trait in which the individual alters or ceases its nocturnal activity during periods of strong lunar illumination found throughout the animal...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号