首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates.  相似文献   

2.
3.
4.
Sequencing of the gene encoding a pyruvate carboxylase-like protein from the amitochondrial eukaryote Giardia intestinalis revealed a 1,338 aa protein composed of acetyl-CoA carboxyltransferase (ACCT), pyruvate carboxyltransferase (PycB), and biotin carboxyl carrier protein (BCCP) domains, linked in a single polypeptide chain. This particular domain combination has been previously seen only in the methylmalonyl-CoA:pyruvate transcarboxylase from Propionibacterium freudenreichii, where each of these domains is encoded by an individual gene and forms a separate subunit. To get an insight into the evolutionary origin and biochemical function of the G. intestinalis enzyme, we compared its domain composition to those of other biotin-dependent enzymes and performed a phylogenetic analysis of each of its domains. The results obtained indicate that: (1) evolution of the BCCP domain included several domain fusion events, leading to the ACCT-BCCP and PycB-BCCP domain combinations; (2) fusions of the PycB and BCCP domains in pyruvate carboxylases and oxaloacetate decarboxylases occurred on several independent occasions in different prokaryotic lineages, probably due to selective pressure towards co-expression of these genes, and (3) because newly sequenced biotin-dependent enzymes are often misannotated in sequence databases, their annotation as either carboxylases, decarboxylases, or transcarboxylases has to rely on detailed analysis of their domain composition, operon organization of the corresponding genes, gene content in the particular genome, and phylogenetic analysis.  相似文献   

5.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis. In Escherichia coli, the enzyme is composed of three distinct protein components: biotin carboxylase, biotin carboxyl carrier protein, and carboxyltransferase. The biotin carboxylase component has served for many years as a paradigm for mechanistic studies devoted toward understanding more complicated biotin-dependent carboxylases. The three-dimensional x-ray structure of an unliganded form of E. coli biotin carboxylase was originally solved in 1994 to 2.4-A resolution. This study revealed the architecture of the enzyme and demonstrated that the protein belongs to the ATP-grasp superfamily. Here we describe the three-dimensional structure of the E. coli biotin carboxylase complexed with ATP and determined to 2.5-A resolution. The major conformational change that occurs upon nucleotide binding is a rotation of approximately 45(o) of one domain relative to the other domains thereby closing off the active site pocket. Key residues involved in binding the nucleotide to the protein include Lys-116, His-236, and Glu-201. The backbone amide groups of Gly-165 and Gly-166 participate in hydrogen bonding interactions with the phosphoryl oxygens of the nucleotide. A comparison of this closed form of biotin carboxylase with carbamoyl-phosphate synthetase is presented.  相似文献   

6.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.  相似文献   

7.
Transcarboxylase is a 1.2 million Dalton (Da) multienzyme complex from Propionibacterium shermanii that couples two carboxylation reactions, transferring CO(2)(-) from methylmalonyl-CoA to pyruvate to yield propionyl-CoA and oxaloacetate. Crystal structures of the 5S metalloenzyme subunit, which catalyzes the second carboxylation reaction, have been solved in free form and bound to its substrate pyruvate, product oxaloacetate, or inhibitor 2-ketobutyrate. The structure reveals a dimer of beta(8)alpha(8) barrels with an active site cobalt ion coordinated by a carbamylated lysine, except in the oxaloacetate complex in which the product's carboxylate group serves as a ligand instead. 5S and human pyruvate carboxylase (PC), an enzyme crucial to gluconeogenesis, catalyze similar reactions. A 5S-based homology model of the PC carboxyltransferase domain indicates a conserved mechanism and explains the molecular basis of mutations in lactic acidemia. PC disease mutations reproduced in 5S result in a similar decrease in carboxyltransferase activity and crystal structures with altered active sites.  相似文献   

8.
The catalytic mechanism of the MgATP-dependent carboxylation of biotin in the biotin carboxylase domain of pyruvate carboxylase from R. etli (RePC) is common to the biotin-dependent carboxylases. The current site-directed mutagenesis study has clarified the catalytic functions of several residues proposed to be pivotal in MgATP-binding and cleavage (Glu218 and Lys245), HCO(3)(-) deprotonation (Glu305 and Arg301), and biotin enolization (Arg353). The E218A mutant was inactive for any reaction involving the BC domain and the E218Q mutant exhibited a 75-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction. The E305A mutant also showed a 75- and 80-fold decrease in k(cat) for both pyruvate carboxylation and the full reverse reaction, respectively. While Glu305 appears to be the active site base which deprotonates HCO(3)(-), Lys245, Glu218, and Arg301 are proposed to contribute to catalysis through substrate binding interactions. The reactions of the biotin carboxylase and carboxyl transferase domains were uncoupled in the R353M-catalyzed reactions, indicating that Arg353 may not only facilitate the formation of the biotin enolate but also assist in coordinating catalysis between the two spatially distinct active sites. The 2.5- and 4-fold increase in k(cat) for the full reverse reaction with the R353K and R353M mutants, respectively, suggests that mutation of Arg353 allows carboxybiotin increased access to the biotin carboxylase domain active site. The proposed chemical mechanism is initiated by the deprotonation of HCO(3)(-) by Glu305 and concurrent nucleophilic attack on the γ-phosphate of MgATP. The trianionic carboxyphosphate intermediate formed reversibly decomposes in the active site to CO(2) and PO(4)(3-). PO(4)(3-) then acts as the base to deprotonate the tethered biotin at the N(1)-position. Stabilized by interactions between the ureido oxygen and Arg353, the biotin-enolate reacts with CO(2) to give carboxybiotin. The formation of a distinct salt bridge between Arg353 and Glu248 is proposed to aid in partially precluding carboxybiotin from reentering the biotin carboxylase active site, thus preventing its premature decarboxylation prior to the binding of a carboxyl acceptor in the carboxyl transferase domain.  相似文献   

9.
Acetyl-CoA carboxylase catalyzes the first committed step in the biosynthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. In this report a system for site-directed mutagenesis of the biotin carboxylase component is described. The wild-type copy of the enzyme, derived from the chromosomal gene, is separated from the mutant form of the enzyme which is coded on a plasmid. Separation of the two forms is accomplished using a histidine-tag attached to the amino terminus of the mutant form of the enzyme and nickel affinity chromatography. This system was used to mutate four active site residues, E211, E288, N290, and R292, to alanine followed by their characterization with respect to several different reactions catalyzed by biotin carboxylase. In comparison to wild-type biotin carboxylase, all four mutant enzymes gave very similar results in all the different assays, suggesting that the mutated residues have a common function. The mutations did not affect the bicarbonate-dependent ATPase reaction. In contrast, the mutations decreased the maximal velocity of the biotin-dependent ATPase reaction 1000-fold but did not affect the Km for biotin. The activity of the ATP synthesis reaction catalyzed by biotin carboxylase where carbamoyl phosphate reacts with ADP was decreased 100-fold by the mutations. The ATP synthesis reaction required biotin to stimulate the activity in the wild-type; however, biotin did not stimulate the activity of the mutant enzymes. The results showed that the mutations have abolished the ability of biotin to increase the activity of the enzyme. Thus, E211, E288, N290, and R292 were responsible, at least in part, for the substrate-induced synergism by biotin in biotin carboxylase.  相似文献   

10.
The biotin-protein populations in several bacterial strains were analyzed by solubilization of [3H]biotin-labeled cells with sodium dodecylsulfate followed by electrophoresis on polyacrylamide gels containing the detergent. A variety of patterns of biotin-labeled polypeptide chains was seen, ranging from a single biotin-protein in Escherichia coli, corresponding to the biotin carboxyl carrier protein component of acetyl-CoA carboxylase, to multiple species in Enterobacter aerogenes, Pseudomonas citronellolis, Bacillus cereus, Propionibacterium shermanii, Lactobacillus plantarum, and Mycobacterium phlei, which probably represent subunits of multiple biotin-dependent enzymes present in these organisms. In the case of Pseudomonas citronellolis two major biotin-containing polypeptides with approximate molecular weights of 65 000 and 25 000 were shown to correspond to the biotin carboxyl carrier components of pyruvate carboxylase and acetyl-CoA carboxylase, respectively. Thus in the case of Pseudomonas citronellolis two different biotin-dependent enzymes in the same cell do not share common biotin carboxyl carrier subunits.  相似文献   

11.
Acetyl-CoA carboxylase catalyzes the committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multifunctional enzyme consisting of three separate proteins: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component, which catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source, has a homologous functionally identical subunit in the mammalian biotin-dependent enzymes propionyl-CoA carboxylase and 3-methylcrotonyl-CoA carboxylase. In humans, mutations in either of these enzymes result in the metabolic deficiency propionic acidemia or methylcrotonylglycinuria. The lack of a system for structure-function studies of these two biotin-dependent carboxylases has prevented a detailed analysis of the disease-causing mutations. However, structural data are available for E. coli biotin carboxylase as is a system for its overexpression and purification. Thus, we have constructed three site-directed mutants of biotin carboxylase that are homologous to three missense mutations found in propionic acidemia or methylcrotonylglycinuria patients. The mutants M169K, R338Q, and R338S of E. coli biotin carboxylase were selected for study to mimic the disease-causing mutations M204K and R374Q of propionyl-CoA carboxylase and R385S of 3-methylcrotonyl-CoA carboxylase. These three mutants were subjected to a rigorous kinetic analysis to determine the function of the residues in the catalytic mechanism of biotin carboxylase as well as to establish a molecular basis for the two diseases. The results of the kinetic studies have revealed the first evidence for negative cooperativity with respect to bicarbonate and suggest that Arg-338 serves to orient the carboxyphosphate intermediate for optimal carboxylation of biotin.  相似文献   

12.
Pyruvate carboxylase is a biotin-dependent enzyme in which the biotin is carboxylated by a putative carboxyphosphate intermediate that is formed in a reaction between ATP and bicarbonate. The resultant carboxybiotin then transfers its carboxyl group to pyruvate to form oxaloacetate. In the Bacillus thermodenitrificans enzyme the biotin is covalently attached to K1112. A mutant form of the enzyme (K1112A) has been prepared which is not biotinylated. This mutant did not catalyse the complete reaction, but did catalyse ATP-cleavage and the carboxylation of free biotin. Oxaloacetate decarboxylation was not catalysed, even in the presence of free biotin, suggesting that only the biotin carboxylation domain of the enzyme is accessible to free biotin. This mutant allowed the study of ATP-cleavage both coupled and not coupled to biotin carboxylation. Kinetic analyses of these reactions indicate that the major effect of the enzyme activator, acetyl CoA, is to promote the carboxylation of biotin. Acetyl CoA reduces the K(m)s for both MgATP and biotin. In addition, pH profiles of the ATP-cleavage reaction in the presence and absence of free biotin revealed the involvement of several ionisable residues in both ATP-cleavage and biotin carboxylation. K1112A also catalyses the phosphorylation of ADP from carbamoyl phosphate. Stopped-flow studies using the fluorescent ATP analogue, formycin A-5'-triphosphate, in which nucleotide binding to the holoenzyme was compared to K1112A indicated that the presence of biotin enhanced binding. Attempts to trap the putative carboxyphosphate intermediate in K1112A using diazomethane were unsuccessful.  相似文献   

13.
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the α- and β-subunits, respectively, are not in an operon, yet yield an α2β2 carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the β-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a ‘dimmer switch’ to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.  相似文献   

14.
Acetyl-CoA carboxylase (ACC) catalyzes the committed and rate-limiting step in fatty acid biosynthesis. The two partial reactions, carboxylation of biotin followed by carboxyl transfer to the acceptor acetyl-CoA, are performed by two separate domains in animal ACCs.The cyclic keto-enol insecticides and acaricides have been proposed to inhibit insect ACCs. In this communication, we show that the enol derivative of the cylic keto-enol insecticide spirotetramat inhibited ACCs partially purified from the insect species Myzus persicae and Spodoptera frugiperda, as well as the spider mite (Tetranychus urticae) ACC which was expressed in insect cells using a recombinant baculovirus. Steady-state kinetic analysis revealed competitive inhibition with respect to the carboxyl acceptor, acetyl-CoA, indicating that spirotetramat-enol bound to the carboxyltransferase domain of ACC. Interestingly, inhibition with respect to the biotin carboxylase substrate ATP was uncompetitive.Amino acid residues in the carboxyltransferase domains of plant ACCs are important for binding of established herbicidal inhibitors. Mutating the spider mite ACC at the homologous positions, for example L1736 to either isoleucine or alanine, and A1739 to either valine or serine, did not affect the inhibition of the spider mite ACC by spirotetramat-enol. These results indicated different binding modes of the keto-enols and the herbicidal chemical families.  相似文献   

15.
To improve our understanding of pyruvate carboxylase (PC)(EC 6.4.1.1) structure and the evolution of the biotin-dependent carboxylases we have isolated and sequenced a yeast (Saccharomyces cerevisiae) genomic DNA fragment encoding PC. The identity of the cloned gene was confirmed by comparing the encoded protein with the sequence of a 26 amino acid biotin-containing peptide isolated from yeast PC. The yeast PC sequence is homologous (43% amino acid homology) to the rat PC sequence, although the carboxyl-terminus was found to be 44 residues from the biotinyl-lysine whereas in all biotin carboxylases sequenced to date the biotin is 35 residues from the carboxyl-terminus.  相似文献   

16.
The role of biotin-dependent enzymes in the fatty liver and kidney syndrome of young chicks was studied. Under conditions of a marginal deficiency of dietary biotin, the level of biotin in the liver has differing effects on the activities of two biotin-dependent enzymes, pyruvate carboxylase and acetyl-CoA carboxylase. The activity of acetyl-CoA carboxylase is increased, but when the dietary deficiency of biotin produces biotin levels which are below 0-8 mug/g of liver, the activity of pyruvate carboxylase may be insufficient to completely metabolize pyruvate via gluconeogenesis. There is an increase in liver size and in the activities of enzymes involved in alternate pathways for the removal of pyruvate. Blood lactate accumulates and there is increased synthesis of fatty acids, and an accumulation of palmitoleic acid; these steps are accomplished by increased activities of at least the following enzymes: acetyl-CoA carboxylase, malate dehydrogenase (decarboxylating) (NADP+) and the desaturase enzyme. When the biotin level is below 0-35 mug/g of liver and the chick is subjected to a stress, physiological defence mechanisms of the chick may be inadequate to maintain homeostasis and they finally collapse, resulting in accumulation of triacylglycerol in the liver and blood; the chick is unable to maintain blood glucose levels and death occurs, often only a few hours after the imposition of the stress.  相似文献   

17.
Archaeoglobus fulgidus harbors three consecutive and one distantly located gene with similarity to the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae (KpOadGAB). The water-soluble carboxyltransferase (AfOadA) and the biotin protein (AfOadC) were readily synthesized in Escherichia coli, but the membrane-bound subunits AfOadB and AfOadG were not. AfOadA was affinity purified from inclusion bodies after refolding and AfOadC was affinity purified from the cytosol. Isolated AfOadA catalyzed the carboxyltransfer from [4-14C]-oxaloacetate to the prosthetic biotin group of AfOadC or the corresponding biotin domain of KpOadA. Conversely, the carboxyltransferase domain of KpOadA exhibited catalytic activity not only with its pertinent biotin domain but also with AfOadC.  相似文献   

18.
Biotin protein ligases catalyze specific covalent linkage of the coenzyme biotin to biotin-dependent carboxylases. The reaction proceeds in two steps, including synthesis of an adenylated intermediate followed by biotin transfer to the carboxylase substrate. In this work specificity in the transfer reaction was investigated using single turnover stopped-flow and quench-flow assays. Cognate and noncognate reactions were measured using the enzymes and minimal biotin acceptor substrates from Escherichia coli, Pyrococcus horikoshii, and Homo sapiens. The kinetic analysis demonstrates that for all enzyme-substrate pairs the bimolecular rate of association of enzyme with substrate limits post-translational biotinylation. In addition, in noncognate reactions the three enzymes displayed a range of selectivities. These results highlight the importance of protein-protein binding kinetics for specific biotin addition to carboxylases and provide one mechanism for determining biotin distribution in metabolism.  相似文献   

19.
Phosphorylation of pea chloroplast acetyl-CoA carboxylase   总被引:4,自引:2,他引:2  
We have examined whether chloroplast acetyl-CoA carboxylase is a phosphoprotein. Pea ( Pisum sativum ) chloroplasts were incubated in the presence of [γ- 33 P]-ATP and radiolabeled proteins were examined after immunoprecipitation with antibodies against all four known subunits of heteromeric chloroplast acetyl-CoA carboxylase. The β-subunit of the carboxyltransferase was found to be labeled by 33 P. Phosphoamino acid analysis of the immunoprecipitated β-subunit of the carboxyltransferase indicates that it is phosphorylated on serine residues. Incorporation of 33 P into carboxyltransferase β-subunit decreased in chloroplasts transferred to dark conditions after labeling in the light. Dephosphorylation of pea chloroplast extracts by an alkaline phosphatase-agarose conjugate reduced in vitro acetyl-CoA carboxylase activity by 67%. Furthermore, while acetyl-CoA carboxylase activity and its carboxyltransferase half-reaction were reduced in dephosphorylated extracts, the biotin carboxylase half-reaction was not inhibited. The evidence presented here points to the carboxyltransferase β-subunit of chloroplast acetyl-CoA carboxylase as a candidate for regulation by protein phosphorylation/dephosphorylation.  相似文献   

20.
Acetyl-CoA carboxylase catalyzes the first committed step in fatty acid synthesis in all plants, animals, and bacteria. The Escherichia coli form is a multimeric protein complex consisting of three distinct and separate components: biotin carboxylase, carboxyltransferase, and the biotin carboxyl carrier protein. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin using bicarbonate as the carboxylate source and has a distinct architecture that is characteristic of the ATP-grasp superfamily of enzymes. Included in this superfamily are d-Ala d-Ala ligase, glutathione synthetase, carbamyl phosphate synthetase, N(5)-carboxyaminoimidazole ribonucleotide synthetase, and glycinamide ribonucleotide transformylase, all of which have known three-dimensional structures and contain a number of highly conserved residues between them. Four of these residues of biotin carboxylase, Lys-116, Lys-159, His-209, and Glu-276, were selected for site-directed mutagenesis studies based on their structural homology with conserved residues of other ATP-grasp enzymes. These mutants were subjected to kinetic analysis to characterize their roles in substrate binding and catalysis. In all four mutants, the K(m) value for ATP was significantly increased, implicating these residues in the binding of ATP. This result is consistent with the crystal structures of several other ATP-grasp enzymes, which have shown specific interactions between the corresponding homologous residues and cocrystallized ADP or nucleotide analogs. In addition, the maximal velocity of the reaction was significantly reduced (between 30- and 260-fold) in the 4 mutants relative to wild type. The data suggest that the mutations have misaligned the reactants for optimal catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号