首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.  相似文献   

2.
Membrane fusion is essential to both cellular vesicle trafficking and infection by enveloped viruses. While the fusion protein assemblies that catalyze fusion are readily identifiable, the specific activities of the proteins involved and nature of the membrane changes they induce remain unknown. Here, we use many atomic-resolution simulations of vesicle fusion to examine the molecular mechanisms for fusion in detail. We employ committor analysis for these million-atom vesicle fusion simulations to identify a transition state for fusion stalk formation. In our simulations, this transition state occurs when the bulk properties of each lipid bilayer remain in a lamellar state but a few hydrophobic tails bulge into the hydrophilic interface layer and make contact to nucleate a stalk. Additional simulations of influenza fusion peptides in lipid bilayers show that the peptides promote similar local protrusion of lipid tails. Comparing these two sets of simulations, we obtain a common set of structural changes between the transition state for stalk formation and the local environment of peptides known to catalyze fusion. Our results thus suggest that the specific molecular properties of individual lipids are highly important to vesicle fusion and yield an explicit structural model that could help explain the mechanism of catalysis by fusion proteins.  相似文献   

3.
As an approach to create versatile model systems of the biological membrane we have recently developed a novel micropatterning strategy of substrate-supported planar lipid bilayers (SPBs) based on photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine. The micropatterned SPBs are composed of a polymeric bilayer matrix and embedded fluid lipid bilayers. In this study, we investigated the incorporation of fluid bilayers into micropatterned polymeric bilayer matrices through the adsorption and reorganization of phospholipid vesicles (vesicle fusion). Total internal reflection fluorescence microscopy observation showed that vesicle fusion started at the boundary of polymeric bilayers and propagated into the central part of lipid-free regions. On the other hand, quartz crystal microbalance with dissipation monitoring revealed that the transformation from adsorbed vesicles into SPBs was significantly accelerated for substrates with micropatterned polymeric bilayers. These results indicate that the edges of polymeric bilayers catalyze the formation of SPBs by destabilizing adsorbed vesicles and also support the premise that polymeric bilayers and embedded fluid bilayers are forming a continuous hybrid bilayer membrane, sealing energetically unfavorable bilayer edges.  相似文献   

4.
Fusion of lipid membranes to form a single bilayer is an essential process for life and provides important biological functions including neurotransmitter release. Membrane fusion proteins facilitate approximation of interacting membranes to overcome the energy barrier. In case of synaptic transmission, proteins involved are known as soluble N‐ethylmaleimide‐sensitive‐factor attachment receptor (SNARE) proteins. The SNAREs from synaptic vesicles interact with the SNAREs from the target membrane to form a coiled‐coil bundle of four helices, thus pulling the membranes tightly together and initiating fusion. However, it remains unclear how these proteins function at molecular level. Natural systems are often too complex to obtain unambiguous results. Simple model systems mimicking natural proteins in synthetic lipid bilayers are powerful tools for obtaining insights into this essential biological process. An important advantage of such systems is their well‐defined composition, which can be systematically varied in order to fully understand events at molecular level. In this review, selected model systems are presented based upon specific interactions between recognition units embedded in separate lipid bilayers mimicking native SNARE protein‐mediated membrane fusion. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Eukaryotic membrane proteins generally reside in membrane bilayers that have lipid asymmetry. However, in vitro studies of the impact of lipids upon membrane proteins are generally carried out in model membrane vesicles that lack lipid asymmetry. Our recently developed method to prepare lipid vesicles with asymmetry similar to that in plasma membranes and with controlled amounts of cholesterol was used to investigate the influence of lipid composition and lipid asymmetry upon the conformational behavior of the pore-forming, cholesterol-dependent cytolysin perfringolysin O (PFO). PFO conformational behavior in asymmetric vesicles was found to be distinct both from that in symmetric vesicles with the same lipid composition as the asymmetric vesicles and from that in vesicles containing either only the inner leaflet lipids from the asymmetric vesicles or only the outer leaflet lipids from the asymmetric vesicles. The presence of phosphatidylcholine in the outer leaflet increased the cholesterol concentration required to induce PFO binding, whereas phosphatidylethanolamine and phosphatidylserine in the inner leaflet of asymmetric vesicles stabilized the formation of a novel deeply inserted conformation that does not form pores, even though it contains transmembrane segments. This conformation may represent an important intermediate stage in PFO pore formation. These studies show that lipid asymmetry can strongly influence the behavior of membrane-inserted proteins.  相似文献   

6.
A W Scotto  D Zakim 《Biochemistry》1985,24(15):4066-4075
We have developed a simple method for reconstituting pure, integral membrane proteins into phospholipid-protein vesicles. The method does not depend on use of detergents or sonication. It has been used successfully with three different types of integral membrane proteins: UDPglucuronosyltransferase (EC 2.4.1.17) from pig liver microsomes, cytochrome oxidase (EC 1.9.3.1) from pig heart, and bacteriorhodopsin from Halobacterium halobium. The method depends on preparing unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) that contain a small amount of myristate as fusogen. Under conditions that the vesicles of DMPC have the property of fusing, all of the above proteins incorporated into bilayers. Two events appear to be involved in forming the phospholipid-protein complexes. The first is a rapid insertion of all proteins into a small percentage of total vesicles. The second is slower but continued fusion of the remaining phospholipid-protein vesicles, or proteoliposomes, with small unilamellar vesicles of DMPC. This latter process was inhibited by conditions under which vesicles of DMPC themselves would not fuse. On the basis of proton pumping by bacteriorhodopsin and negative staining, the vesicles were unilamellar and large. The data suggest that insertion of the above integral membrane proteins into vesicles occurred independently of fusion between vesicles.  相似文献   

7.
Membrane domains ("rafts") have received great attention as potential platforms for proteins in signaling and trafficking. Because rafts are believed to form by cooperative lipid interactions but are not directly accessible in vivo, artificial phase-separating lipid bilayers are useful model systems. Giant unilamellar vesicles (GUVs) offer large free-standing bilayers, but suitable methods for incorporating proteins are still scarce. Here we report the reconstitution of two water-insoluble SNARE proteins into GUVs without fusogenic additives. Following reconstitution, protein functionality was assayed by confocal imaging and fluorescence auto- and cross-correlation spectroscopy. Incorporation into GUVs containing phase-separating lipids revealed that, in the absence of other cellular factors, both proteins exhibit an intrinsic preference for the liquid-disordered phase. Although the picture from detergent resistance assays on whole cells is ambiguous, reconstitutions of components of the exocytic machinery into GUVs by this new approach should yield insight into the dynamics of protein complex associations with hypothesized liquid-ordered phase microdomains, the correspondence between detergent-resistant membranes and liquid-ordered phase, and the mechanism of SNARE-mediated membrane fusion.  相似文献   

8.
After prelabeling the plasma membrane with several lipid-specific fluorescent probes, erythrocytes with symmetric lipid bilayers were fused with culture cells using either poly(ethylene glycol) or Sendai virus as fusogen. Several nonspecific probes were transferred to, and became uniformly distributed within, the culture cell membrane upon fusion. In contrast, when merocyanine 540, which displays preferential binding to bilayers in which the lipids are loosely packed, was used to prelabel erythrocytes, fluorescence remained localized within a small confined area of the membrane, even 24 h after fusion. These results suggest that insertion of the lipids of the erythrocyte membrane into the plasma membrane of the culture cell can produce discrete domains which persist as such for long periods following fusion. Because the inserted proteins of the erythrocyte membrane similarly do not freely diffuse throughout the culture cell membrane, interactions between membrane proteins and lipids may be involved in this singular compartmentalization.  相似文献   

9.
Interplay between lipids and the proteinaceous membrane fusion machinery   总被引:1,自引:0,他引:1  
For membrane fusion to occur, opposed lipid bilayers initially establish a fusion pore, often followed by complete mixing of the fusing membranes. Contemporary views suggest that during fusion lipid bilayers are continuous passive platforms that are disrupted and remodeled by catalytic proteins. Some models propose that even the architecture and composition of the fusion pore might be dominated by proteins rather than lipids. Hence, lipids have no regulatory contribution to this process; they simply adapt their shape passively for filling space between otherwise autonomous protein machineries.However, an increasing number of experimental findings indicate that membrane fusion critically depends on a variety of lipids and lipid derivatives. Therefore, a purely proteocentric view describes fusion mechanisms insufficiently. Instead, lipids have functions probably at different levels, as (i) a general influence on the propensity of lipid bilayers to fuse, (ii) a role in recruiting exocytotic proteins to the plasma membrane, (iii) a role in organizing membrane domains for fusion and (iv) direct regulatory effects on fusion protein complexes. In this review we have made an attempt to bring together the large body of evidence supporting a major role for lipids in membrane fusion either directly or indirectly.  相似文献   

10.
Glycerolipid transfer for the building of membranes in plant cells   总被引:5,自引:0,他引:5  
Membranes of plant organelles have specific glycerolipid compositions. Selective distribution of lipids at the levels of subcellular organelles, membrane leaflets and membrane domains reflects a complex and finely tuned lipid homeostasis. Glycerolipid neosynthesis occurs mainly in plastid envelope and endoplasmic reticulum membranes. Since most lipids are not only present in the membranes where they are synthesized, one cannot explain membrane specific lipid distribution by metabolic processes confined in each membrane compartment. In this review, we present our current understanding of glycerolipid trafficking in plant cells. We examine the potential mechanisms involved in lipid transport inside bilayers and from one membrane to another. We survey lipid transfers going through vesicular membrane flow and those dependent on lipid transfer proteins at membrane contact sites. By introducing recently described membrane lipid reorganization during phosphate deprivation and recent developments issued from mutant analyses, we detail the specific lipid transfers towards or outwards the chloroplast envelope.  相似文献   

11.
Understanding cellular membrane processes is critical for the study of events such as viral entry, neurotransmitter exocytosis, and immune activation. Supported lipid bilayers are commonly used to model these membrane processes experimentally. Despite the relative simplicity of such a system, many important structural and dynamic parameters are not experimentally observable with current techniques. Computational approaches allow the development of a high-resolution model of bilayer processes. We have performed molecular dynamics simulations of dimyristoylphosphatidylcholine (DMPC) bilayers to model the creation of bilayer gaps—a common process in bilayer patterning—and to analyze their structure and dynamics. We propose a model for gap formation in which the bilayer edges form metastable micelle-like structures on a nanosecond timescale. Molecules near edges structurally resemble lipids in ungapped bilayers but undergo small-scale motions more rapidly. These data suggest that lipids may undergo rapid local rearrangements during membrane fusion, facilitating the formation of fusion intermediates thought key to the infection cycle of viruses such as influenza, Ebola, and HIV.  相似文献   

12.
The fusion between two lipid membranes is a ubiquitous mechanism in cell traffic and pathogens invasion. Yet it is not well understood how two distinct bilayers overcome the energy barriers towards fusion and reorganize themselves to form a unique continuous bilayer. The magnitudes and numbers of these energy barriers are themselves an open question. To tackle these issues, we developed a new tool that allows to control the forces applied between two supported lipid bilayers (SLBs) deposited on superparamagnetic beads. By applying a magnetic field, the beads self-organize along field lines in chains of beads and compress the two membranes on the contact zone. Using the diffusion of fluorescently labelled lipids from one bilayer to the other allows us to identify fusion of the bilayers in contact. We applied increasing forces on SLBs and increased the occurrence of fusion. This experimental system allows the simultaneous study of tens of facing bilayers in a single experiment and mitigates the stochasticity of the fusion process. It is thus a powerful tool to test the various parameters involved in the membrane fusion process.  相似文献   

13.
SNARE proteins mediate the fusion of lipid bilayers by the directed assembly of coiled-coil domains arising from apposing membranes. We have utilized inverted cone-shaped lipids, antagonists of the necessary membrane deformation during fusion to characterize the extent and range of SNARE assembly up to the moment of stalk formation between bilayers. The inverted cone-shaped lipid family of acyl-CoAs specifically inhibits the completion of fusion in an acyl-chain length-dependent manner. Removal of acyl-CoA from the membrane relieves the inhibition and initiates a burst of membrane fusion with rates exceeding any point in the control curves lacking acyl-CoA. This burst indicates the accumulation of semi-assembled fusion complexes. These preformed complexes are resistant to cleavage by botulinum toxin B and thus appear to have progressed beyond the "loosely zippered" state of docked synaptic vesicles. Surprisingly, application of the soluble domain of VAMP2, which blocks SNARE assembly by competing for binding on the available t-SNAREs, blocks recovery from the acyl-CoA inhibition. Thus, complexes formed in the presence of a lipidic antagonist to fusion are incompletely assembled, suggesting that the formation of tightly assembled SNARE pairs requires progression all the way through to membrane fusion. In this regard, physiologically docked exocytic vesicles may be anchored by a highly dynamic and potentially even reversible SNAREpin.  相似文献   

14.
Li Y  Han X  Tamm LK 《Biochemistry》2003,42(23):7245-7251
The fusion peptides of viral membrane fusion proteins play a key role in the mechanism of viral spike glycoprotein mediated membrane fusion. These peptides insert into the lipid bilayers of cellular target membranes where they adopt mostly helical secondary structures. To better understand how membranes may be converted to high-energy intermediates during fusion, it is of interest to know how much energy, enthalpy and entropy, is provided by the insertion of fusion peptides into lipid bilayers. Here, we describe a detailed thermodynamic analysis of the binding of analogues of the influenza hemagglutinin fusion peptide of different lengths and amino acid compositions. In small unilamellar vesicles, the interaction of these peptides with lipid bilayers is driven by enthalpy (-16.5 kcal/mol) and opposed by entropy (-30 cal mol(-1) K(-1)). Most of the driving force (deltaG = -7.6 kcal/mol) comes from the enthalpy of peptide insertion deep into the lipid bilayer. Enthalpic gains and entropic losses of peptide folding in the lipid bilayer cancel to a large extent and account for only about 40% of the total binding free energy. The major folding event occurs in the N-terminal segment of the fusion peptide. The C-terminal segment mainly serves to drive the N-terminus deep into the membrane. The fusion-defective mutations G1S, which causes hemifusion, and particularly G1V, which blocks fusion, have major structural and thermodynamic consequences on the insertion of fusion peptides into lipid bilayers. The magnitudes of the enthalpies and entropies of binding of these mutant peptides are reduced, their helix contents are reduced, but their energies of self-association at the membrane surface are increased compared to the wild-type fusion peptide.  相似文献   

15.
Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 105 FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm2 within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.  相似文献   

16.
The process of fusion at the nerve terminal is mediated via a specialized set of proteins in the synaptic vesicles and the presynaptic membrane. Three soluble N-ethylmaleimide-sensitive factor (NSF)-attachment protein receptors (SNAREs) have been implicated in membrane fusion. The structure and arrangement of these SNAREs associated with lipid bilayers were examined using atomic force microscopy. A bilayer electrophysiological setup allowed for measurements of membrane conductance and capacitance. Here we demonstrate that the interaction of these proteins to form a fusion pore is dependent on the presence of t-SNAREs and v-SNARE in opposing bilayers. Addition of purified recombinant v-SNARE to a t-SNARE-reconstituted lipid membrane increased only the size of the globular t-SNARE oligomer without influencing the electrical properties of the membrane. However when t-SNARE vesicles were added to a v-SNARE membrane, SNAREs assembles in a ring pattern and a stepwise increase in capacitance, and increase in conductance were observed. Thus, t- and v-SNAREs are required to reside in opposing bilayers to allow appropriate t-/v-SNARE interactions leading to membrane fusion.  相似文献   

17.
To understand the initial stages of membrane destabilization induced by viral proteins, the factors important for binding of fusion peptides to cell membranes must be identified. In this study, effects of lipid composition on the mode of peptides' binding to membranes are explored via molecular dynamics (MD) simulations of the peptide E5, a water-soluble analogue of influenza hemagglutinin fusion peptide, in two full-atom hydrated lipid bilayers composed of dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC, respectively). The results show that, although the peptide has a common folding motif in both systems, it possesses different modes of binding. The peptide inserts obliquely into the DMPC membrane mainly with its N-terminal alpha helix, while in DPPC, the helix lies on the lipid/water interface, almost parallel to the membrane surface. The peptide seriously affects structural and dynamical parameters of surrounding lipids. Thus, it induces local thinning of both bilayers and disordering of acyl chains of lipids in close proximity to the binding site. The "membrane response" significantly depends upon lipid composition: distortions of DMPC bilayer are more pronounced than those in DPPC. Implications of the observed effects to molecular events on initial stages of membrane destabilization induced by fusion peptides are discussed.  相似文献   

18.
Villar AV  Alonso A  Goñi FM 《Biochemistry》2000,39(46):14012-14018
Large unilamellar vesicles containing phosphatidylinositol (PI), neutral phospholipids, and cholesterol are induced to fuse by the catalytic activity of phosphatidylinositol-specific phospholipase C (PI-PLC). PI cleavage by PI-PLC is followed by vesicle aggregation, intervesicular lipid mixing, and mixing of vesicular aqueous contents. An average of 2-3 vesicles merge into a large one in the fusion process. Vesicle fusion is accompanied by leakage of vesicular contents. A novel method has been developed to monitor mixing of lipids located in the inner monolayers of the vesicles involved in fusion. Using this method, the mixing of inner monolayer lipids and that of vesicular aqueous contents are seen to occur simultaneously, thus giving rise to the fusion pore. Kinetic studies show, for fusing vesicles, second-order dependence of lipid mixing on diacylglycerol concentration in the bilayer. Varying proportions of PI in the liposomal formulation lead to different physical effects of PI-PLC. Specifically, 30-40 mol % PI lead to vesicle fusion, while with 5-10 mol % PI only hemifusion is detected, i.e., mixing of outer monolayer lipids without mixing of aqueous contents. However, when diacylglycerol is included in the bilayers containing 5 mol % PI, PI-PLC activity leads to complete fusion.  相似文献   

19.
Lipid bilayers provide a solute-proof barrier that is widely used in living systems. It has long been recognized that the structural changes of lipids during the phase transition from bilayer to non-bilayer have striking similarities with those accompanying membrane fusion processes. In spite of this resemblance, the numerous quantitative studies on pure lipid bilayers are difficult to apply to real membranes. One reason is that in living matter, instead of pure lipids, lipid mixtures are involved and there is currently no model that establishes the connection between pure lipids and lipid mixtures. Here, we make this connection by showing how to obtain (i) the short-range repulsion between bilayers made of lipid mixtures and, (ii) the pressure at which transition from bilayer phase to non-bilayer phases occur. We validated our models by fitting the experimental data of several lipid mixtures to the theoretical data calculated based on our model. These results provide a useful tool to quantitatively predict the behavior of complex membranes at low hydration.  相似文献   

20.
Membrane fusion proceeds via a merging of two lipid bilayers and a redistribution of aqueous contents and bilayer components. It involves transition states in which the phospholipids are not arranged in bilayers and in which the monolayers are highly curved. Such transition states are energetically unfavourable since biological membranes are submitted to strong repulsive hydration electrostatic and steric barriers. Viral membrane proteins can help to overcome these barriers. Viral proteins involved in membrane fusion are membrane associated and the presence of lipids restricts drastically the potential of methods (RMN, X-ray crystallography) that have been used successfully to determine the tertiary structure of soluble proteins. We describe here how IR spectroscopy allows to solve some of the problems related to the lipid environment.The principles of the method, the experimental setup and the preparation of the samples are briefly described. A few examples illustrate how attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy can be used to gain information on the orientation and the accessibility to the water phase of the fusogenic domain of viral proteins. Recent developments suggest that the method could also be used to detect changes located in the membrane domains and to identify intermediate structural states involved in the fusion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号