首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Almost all cortical areas are connected to the subcortical basal ganglia (BG) through parallel recurrent inhibitory and excitatory loops, exerting volitional control over automatic behavior. As this model is largely based on non-human primate research, we used high resolution functional MRI and diffusion tensor imaging (DTI) to investigate the functional and structural organization of the human (pre)frontal cortico-basal network controlling eye movements. Participants performed saccades in darkness, pro- and antisaccades and observed stimuli during fixation. We observed several bilateral functional subdivisions along the precentral sulcus around the human frontal eye fields (FEF): a medial and lateral zone activating for saccades in darkness, a more fronto-medial zone preferentially active for ipsilateral antisaccades, and a large anterior strip along the precentral sulcus activating for visual stimulus presentation during fixation. The supplementary eye fields (SEF) were identified along the medial wall containing all aforementioned functions. In the striatum, the BG area receiving almost all cortical input, all saccade related activation was observed in the putamen, previously considered a skeletomotor striatal subdivision. Activation elicited by the cue instructing pro or antisaccade trials was clearest in the medial FEF and right putamen. DTI fiber tracking revealed that the subdivisions of the human FEF complex are mainly connected to the putamen, in agreement with the fMRI findings. The present findings demonstrate that the human FEF has functional subdivisions somewhat comparable to non-human primates. However, the connections to and activation in the human striatum preferentially involve the putamen, not the caudate nucleus as is reported for monkeys. This could imply that fronto-striatal projections for the oculomotor system are fundamentally different between humans and monkeys. Alternatively, there could be a bias in published reports of monkey studies favoring the caudate nucleus over the putamen in the search for oculomotor functions.  相似文献   

2.
We investigated the effects of interruption of the impulse flow in the habenulopeduncular pathways by local infusion of tetrodotoxin on the acetylcholine and choline content in selected dopamine rich regions in the forebrain and midbrain in rats. The tetrodotoxin infusion caused a marked increase in acetylcholine content in the medial frontal cortex, striatum and ventral tegmental area+interpeduncular nucleus, but not in the limbic area or the substantia nigra, whereas choline content was reduced only in both the striatum and ventral tegmental area+interpeduncular nucleus. There was an increase in 3,4-dihydroxyphenylacetic acid content in the striatum after the manipulation. These findings suggest that the dorsal diencephalic conduction system may be involved in the integration of the activity of cholinergic neurons in the forebrain and midbrain regions and striatal dopanine neurons may play a role in the modulation of cholinergic neurons.  相似文献   

3.
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.  相似文献   

4.
Abstract: The origin of afferent somatostatin-containing fibers terminating in medial and ventral parts of the striatum has been investigated by performing various neuro-chemical and surgical lesions in the rat. Lesions of the anterior hypothalamus, amygdala, and the hippocampal commissure as well as lesions with 6-hydroxydopamine and 5,7-dihydroxytryptamine failed to decrease striatal soma-tostatin levels. However, thermal coagulation of the globus pallidus or knife-cut lesions performed ventrally to the striatum resulted in significant decreases in striatal somatostatin content. Analysis of the topographical distribution of somatostatin within the striatum after thermal lesions of the globus pallidus as well as after kainic acid-induced seizures revealed a preferential loss of the peptide in medial and ventral portions of the striatum, the site of terminating afferent somatostatin nerve fibers. The data suggest that the striatal afferent somatostatin-containing neurons may originate in the area of the globus pallidus.  相似文献   

5.
The distribution of cytochrome oxidase (CO) activity was explored in the striatum of two mammalian species, the rat and the cat. Regional differences in the striatal distribution of CO were detected in both species. Thus, in most of our experimental material for rodents, an extensive band richer in CO was present in peripheral regions of the rostral and outer part of the corpus striatum. This striatal band was running in coronal sections, from medial and dorsal to lateral and ventral. In the cat's striatum, rostral and, above all, dorsal territories of the caudate nucleus were prominently stained for CO. In addition, in both species, although more sharply shown in the cat, it was possible to delineate a heterogeneous distribution of this mitochondrial enzyme following the local compartmental design of acetylcholinesterase (AChE) within the mammalian striatum. Zones with low concentration of AChE were in register with areas in which CO was low as well. This regional and local striatal heterogeneity might be a consequence of differences in the mitochondrial activity of cells located in diverse histochemical striatal parcels and, therefore, with different functional targets outside the striatum.  相似文献   

6.
The purpose of the present investigation was to map chemically the distribution of certain neurotransmitter systems in the neostriatum of rats aged 6, 16, and 26 months. This mapping was carried out by microdissection of discrete striatal regions coupled with radiometric assays for choline acetyltransferase (ChAT), glutamate decarboxylase (GAD), dopamine (DA), and norepinephrine (NA). In all age groups, ChAT, DA, and NA were highest in the rostral relative to the caudal neostriatum. Additionally, ChAT was higher in the lateral than in the medial region, whereas GAD was more homogeneously distributed within the striatum. ChAT activity was decreased significantly primarily in the caudal regions in rats aged 16 and 26 months. DA levels were decreased in the caudal striatum in rats aged 26 months. NA levels were found to be significantly decreased primarily in the rostral neostriatal regions of the oldest rats. GAD activity remained unchanged in all age groups. These regional changes in selected neurotransmitter systems may underlie specific motor and cognitive deficits that often occur during aging.  相似文献   

7.
Abstract: To examine potential alteration of GABAergic striatal neurons in Alzheimer's disease, we used quantitative in situ hybridization to analyze the messenger RNA coding for Mr 67,000 glutamic acid decarboxylase (GAD67 mRNA) in the striatum of five patients with Alzheimer's disease (AD) and nine matched control subjects. We found a 51–57% increase in the optical density of hybridization signal in the caudate nucleus and putamen, corresponding to a 30–42% increase in the number of neurons expressing a detectable amount of GAD67 mRNA. By contrast, no alteration was observed in the ventral striatum. The expression of GAD67 mRNA per neuron was similar in AD and control subjects both in the dorsal and ventral striatum. Taken together, our data indicate that, in AD, GABAergic neurotransmission is increased in the dorsal striatum but not in the ventral striatum. We suggest that this increased GABAergic neurotransmission may explain extrapyramidal signs often observed in AD.  相似文献   

8.
Abstract: The mouse mutant coloboma ( Cm /+), which exhibits profound spontaneous hyperactivity and bears a deletion mutation on chromosome 2, including the gene encoding synaptosomal protein SNAP-25, has been proposed to model aspects of attention-deficit hyperactivity disorder. Increasing evidence suggests a crucial role for SNAP-25 in the release of both classical neurotransmitters and neuropeptides. In the present study, we compared the release of specific neurotransmitters in vitro from synaptosomes and slices of selected brain regions from Cm /+ mice with that of +/+ mice. The release of dopamine (DA) and serotonin (5-HT) from striatum, and of arginine vasopressin and corticotropin-releasing factor from hypothalamus and amygdala is calcium-dependent. Glutamate release from and content in cortical synaptosomes of Cm /+ mice are greatly reduced, which might contribute to the learning deficits in these mutants. In dorsal striatum of Cm /+ mutants, but not ventral striatum, KCI-induced release of DA is completely blocked and that of 5-HT is significantly attenuated, suggesting that striatal DA and 5-HT deficiencies may be involved in hyperactivity. Further, although acetylcholine failed to induce hypothalamic corticotropin-releasing factor release from Cm /+ slices, restraint stress increased plasma corticosterone levels in Cm /+ mice to a significantly higher level than in +/+ mice, suggesting an important role for arginine vasopressin in hypothalamic-pituitary-adrenal axis activation. These results suggest that reduced SNAP-25 expression may contribute to a region-specific and neurotransmitter-specific deficiency in neurotransmitter release.  相似文献   

9.
Lesions in the rat of the ventral mesencephalic tegmentum (vmt) which contains the A10 dopaminergic (DA) cell bodies, have a wide range of effects on behaviour. The principal characteristic of such lesioned animals is a locomotor hyperactivity and a disinhibition of behavioural supression with serious consequences for behaviour fundamental to the survival of the individual and the species. 1 Initially, we felt that an anatomical study of the region could provide a basis for explaining the vmt syndrome. We decided, therefore, to use several anatomical techniques, such as silver staining, anterograde tracing using autoradiography, and retrograde tracing with horseradish peroxidase (HRP). These studies have led to the following conclusions: (1) The vmt neurones are an important interface between anterior limbic structures and posterior limbic and reticular regions. (2) vmt neurones have specific anatomical relations with the frontal system, i.e., the prefrontal cortex and the anterior striatum. 2 Secondly, we wondered if such anatomical connections were the basis for functional relationships. We have therefore studied animals in a delayed alternation task, which is a sensitive and selective test of damage to the frontal system. Rats with electrolytic or 6-hydroxydopamine (6-OHDA) lesions of the DA cells in the vmt show large deficits in delayed alternation tasks. 6-OHDA lesions of the DA A10 terminals in the prefrontal cortex, the anterior striatum or the nucleus accumbens lead to similar behavioural deficits. Moreover, the specificity of such deficits has been shown in a runway test and a visual discrimination task. 3 On the basis of these results, we put forward the hypothesis that the A10 DA neurones play a role in the integration of information from internal and external stimuli which are relayed to the prefrontal system. From this viewpoint, a deficit in selective attention lies at the heart of the different forms of the vmt syndrome.  相似文献   

10.
The principle omega-3 fatty acid in brain, docosahexaenoic acid (DHA), accumulates in the brain during perinatal cortical expansion and maturation. Animal studies have demonstrated that reductions in perinatal brain DHA accrual are associated with deficits in neuronal arborization, multiple indices of synaptic pathology including deficits in serotonin and mesocorticolimbic dopamine neurotransmission, neurocognitive deficits, and elevated behavioral indices of anxiety, aggression, and depression. In primates and humans, preterm delivery is associated with deficits in fetal cortical DHA accrual, and children/adolescents born preterm exhibit deficits in cortical gray matter maturation, neurocognitive deficits particularly in the realm of attention, and increased risk for attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. Individuals diagnosed with ADHD or schizophrenia exhibit deficits in cortical gray matter maturation, and medications found to be efficacious in the treatment of these disorders increase cortical and striatal dopamine neurotransmission. These associations in conjunction with intervention trials showing enhanced cortical visual acuity and cognitive outcomes in preterm and term infants fed DHA, suggest that perinatal deficits in brain DHA accrual may represent a preventable neurodevelopmental risk factor for the subsequent emergence of psychopathology.  相似文献   

11.
成年大鼠纹状体、边缘区和苍白球的计算机三维结构重建   总被引:2,自引:0,他引:2  
应用计算机图形技术在大鼠脑的连续冠状切片Nissl染色的基础上通过Onyx2超级图形工作站对大鼠脑的纹状体进行了三维重建。结果提示:大鼠纹状体由尾壳核、苍白球和边缘区三部分组成,其中边缘区位于尾壳核和苍白球之间,被二完全包绕;尾壳核呈近似的内凹半球形,嘴尾径最大的为6.2mm;背腹径最大为4.9mm;宽度(冠状平面上的内外径)为3.5mm。从嘴侧到尾侧随着脑平面的增宽,尾壳核逐渐向外侧(即靠近外轮廓的方向)移位。苍白球呈块形,嘴尾径最大为4.4mm,背腹径最大为2.6mm,宽度(冠状平面上的内外径)最大为1.5mm。位于尾壳核的内侧,除内侧外基它三个方向均被尾壳核包绕。边缘区呈现一个片状扇形结构,嘴侧背腹径大,最大为2.2mm,宽约0.17mm;尾侧背腹径小,为0.8mm,宽约0.13mm。同属壳核和苍白球一样,从嘴侧到尾侧随着脑平面的增宽边缘区亦逐渐向外侧(即靠近外轮廓的方向)移位,其移位的幅度亦明显大于脑平面增宽的幅度;整个边缘区从嘴侧到尾侧呈均匀变化,其片状逐渐变宽,长度(背腹径)逐渐变小,从而形成一个盘状结构。  相似文献   

12.
Abstract: The present study examined whether the prefrontal cortex (PFC) exerts a tonic control over the basal release of dopamine in the limbic striatum and whether this control is mediated by glutamatergic afferents to the dopamine cell body or terminal regions. Using intracerebral microdialysis in freely moving rats, it was demonstrated that application of tetrodotoxin in the contralateral PFC significantly decreased the release of dopamine in the medial striatum. Conversely, blockade of the tonic inhibitory GABAergic input in the PFC with bicuculline increased the release of dopamine in the medial striatum. Application of excitatory amino acid receptor antagonists into the striatum, while bicuculline was perfused in the PFC, did not affect the bicuculline-evoked dopamine increase in the striatum. However, infusion of tetrodotoxin or excitatory amino acid receptor antagonists into the ventral tegmental area, a region containing dopamine cell bodies that project to the medial striatum, blocked the stimulation of striatal dopamine release induced by infusion of bicuculline into the PFC. These data demonstrate that the basal output of dopamine terminals in the medial striatum is under a tonic excitatory control of the PFC. Furthermore, this control occurs primarily through glutamatergic projections to the dopamine cell body area rather than the terminal regions.  相似文献   

13.
Attention-deficit/hyperactivity disorder is a highly heritable and prevalent neuropsychiatric disorder estimated to affect 6% of school-age children. Its clinical hallmarks are inattention, hyperactivity and impulsivity, which often respond substantially to treatment with methylphenidate or dextroamphetamine. Etiological theories suggest a deficit in corticostriatal circuits, particularly those components modulated by dopamine. We developed a new functional magnetic resonance imaging procedure (T2 relaxometry) to indirectly assess blood volume in the striatum (caudate and putamen) of boys 6-12 years of age in steady-state conditions. Boys with attention-deficit/hyperactivity disorder had higher T2 relaxation time measures in the putamen bilaterally than healthy control subjects. Relaxation times strongly correlated with the child's capacity to sit still and his accuracy in accomplishing a computerized attention task. Daily treatment with methylphenidate significantly changed the T2 relaxation times in the putamen of children with attention-deficit/hyperactivity disorder, although the magnitude and direction of the effect was strongly dependent on the child's unmedicated activity state. There was a similar but nonsignificant trend in the right caudate. T2 relaxation time measures in thalamus did not differ significantly between groups, and were not affected by methylphenidate. Attention-deficit/hyperactivity disorder symptoms may be closely tied to functional abnormalities in the putamen, which is mainly involved in the regulation of motor behavior.  相似文献   

14.
Striatal input from the ventrobasal complex of the rat thalamus   总被引:1,自引:1,他引:0  
We have analyzed whether caudal regions of the caudate putamen receive direct projections from thalamic sensory relay nuclei such as the ventrobasal complex. To this aim, the delivery of the retrograde neuroanatomical tracer Fluoro-Gold into the caudal caudate putamen resulted in the appearance of retrogradely labeled neurons in the ventral posteromedial and ventral posterolateral thalamic nuclei. These projections were further confirmed with injections of the anterograde tracers biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin into these thalamic nuclei, by showing the existence of axonal terminal fields located in the caudal striatum. These results support the existence of direct projections linking the thalamic ventrobasal complex and the caudal striatum in the rat, probably via collateralization of thalamocortical axons when passing through the caudate putamen, and therefore supporting the putative involvement of the caudal striatum in sensory-related functions.  相似文献   

15.
Several lines of evidence have implicated the mesolimbic dopamine reward pathway in altered brain function resulting from exposure to early adversity. The present study examined the impact of early life adversity on different stages of neuronal reward processing later in life and their association with a related behavioral phenotype, i.e. attention deficit/hyperactivity disorder (ADHD). 162 healthy young adults (mean age = 24.4 years; 58% female) from an epidemiological cohort study followed since birth participated in a simultaneous EEG-fMRI study using a monetary incentive delay task. Early life adversity according to an early family adversity index (EFA) and lifetime ADHD symptoms were assessed using standardized parent interviews conducted at the offspring''s age of 3 months and between 2 and 15 years, respectively. fMRI region-of-interest analysis revealed a significant effect of EFA during reward anticipation in reward-related areas (i.e. ventral striatum, putamen, thalamus), indicating decreased activation when EFA increased. EEG analysis demonstrated a similar effect for the contingent negative variation (CNV), with the CNV decreasing with the level of EFA. In contrast, during reward delivery, activation of the bilateral insula, right pallidum and bilateral putamen increased with EFA. There was a significant association of lifetime ADHD symptoms with lower activation in the left ventral striatum during reward anticipation and higher activation in the right insula during reward delivery. The present findings indicate a differential long-term impact of early life adversity on reward processing, implicating hyporesponsiveness during reward anticipation and hyperresponsiveness when receiving a reward. Moreover, a similar activation pattern related to lifetime ADHD suggests that the impact of early life stress on ADHD may possibly be mediated by a dysfunctional reward pathway.  相似文献   

16.
The activities of several enzymes involved in the metabolism of aspartate and glutamate were measured in striatal (nucleus caudatus and putamen) homogenates 2-3, 6-7, and 35-40 days following frontoparietal and frontal cortical ablation. The activity of glutamine synthetase (GS) was substantially increased (46-48%) on the operated side 6-7 days following the lesion whereas smaller changes were observed at 2-3 and 35-40 days after lesion. In contrast, decreased levels of glutaminase and malate dehydrogenase (MDH) were observed by 6-7 days while no significant change was found at either 2-3 or 35-40 after the lesion. The activities of glutamate dehydrogenase (GDH) and glutamate decarboxylase (GAD) were elevated after 35-40 days whereas no changes in the levels of either GDH or aspartate aminotransferase (ASAT) were found at 2-3 or 6-7 days after the fronto-parietal decortication. When only the frontal cortex was removed quantitatively similar changes were observed in striatal GS and glutaminase activity. The content of glutamate and glutamine in the denervated striatum followed qualitatively the changes in glutaminase and GS. The results indicate that the degeneration of cortico-striatal terminals causes a profound glial reaction in the striatum, and both glutaminase and MDH are present in relatively high concentrations in the corticostriatal terminals.  相似文献   

17.
Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM). To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA). Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.  相似文献   

18.
Epidepride, (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-iodo-2,3-dimethoxybenzamide+ ++, the iodine analogue of isoremoxipride (FLB 457), was found to be a very potent dopamine D2 receptor antagonist. Optimal in vitro binding required incubation at 25 degrees C for 4 h at pH 7.4 in a buffer containing 120 mM NaCl, 5 mM KCl, 2 mM CaCl2 and 1 mM MgCl2. Scatchard analysis of in vitro binding to striatal, medial frontal cortical, hippocampal and cerebellar membranes revealed a KD of 24 pM in all regions, with Bmax's of 36.7, 1.04, 0.85, and 0.37 pmol/g tissue, respectively. The Hill coefficients ranged from 0.91-1.00 in all four regions. The IC50's for inhibition of [125I]epidepride binding to striatal, medial frontal cortical, and hippocampal membranes for SCH 23390, SKF 83566, serotonin, ketanserin, mianserin, naloxone, QNB, prasozin, clonidine, alprenolol, and norepinephrine ranged from 1 microM to greater than 10 microM. Partial displacement of [125I]epidepride by nanomolar concentrations of clonidine was noted in the frontal cortex and hippocampus, but not in the striatum. Scatchard analysis of epidepride binding to alpha 2 noradrenergic receptors in the frontal cortex and hippocampus revealed an apparent KD of 9 nM. At an epidepride concentration equal to the KD for the D2 receptor, i.e. 25 pM, no striatal alpha 2 binding was seen and only 7% of the specific epidepride binding in the cortex or hippocampus was due to binding at the alpha 2 site. Correlation of inhibition of [3H]spiperone and [125I]epidepride binding to striatal membranes by a variety of D2 ligands revealed a correlation coefficient of 0.99, indicating that epidepride labels a D2 site. In vitro autoradiography revealed high densities of receptor binding in layers V and VI of prefrontal and cingulate cortices as well as in striatum. In vivo rat brain uptake revealed a hippocampal:cerebellar and frontal cortical:cerebellar ratio of 2.2:1 which fell to 1.1:1 following haloperidol pretreatment. These properties suggest that [125I]epidepride is a superior radioligand for the in vitro and in vivo study of striatal and extrastriatal dopamine D2 receptors.  相似文献   

19.
Microdialysis was used to assess extracellular dopamine in striatum, nucleus accumbens, and medial frontal cortex of unanesthetized rats both under resting conditions and in response to intermittent tail-shock stress. The dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid also were measured. The resting extracellular concentration of dopamine was estimated to be approximately 10 nM in striatum, 11 nM in nucleus accumbens, and 3 nM in medial frontal cortex. In contrast, the resting extracellular levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid were in the low micromolar range. Intermittent tail-shock stress increased extracellular dopamine relative to baseline by 25% in striatum, 39% in nucleus accumbens, and 95% in medial frontal cortex. 3,4-Dihydroxyphenylacetic acid and homovanillic acid also were generally increased by stress, although there was a great deal of variability in these responses. These data provide direct in vivo evidence for the global activation of dopaminergic systems by stress and support the concept that there exist regional variations in the regulation of dopamine release.  相似文献   

20.
1. With respect to the mesostriatal projection, the mesencephalon is composed of two dopaminergic (DA) cell populations, called dorsal tier and ventral tier. Strong evidence suggests differences in both the spatial and the temporal sequence of the innervation of the striatum between the two groups, with the ventral tier neurons innervating striatal patches prenatally and dorsal tier cells innervating striatal matrix postnatally. 2. Using in situ hybridization, we have examined the expression of the gene coding for tyrosine hydroxylase (TH) in mesencephalic DA neurons with respect to their postnatal development. Two ontogenic patterns of expression were observed: (a) dorsal tier neurons of the medial mesencephalon exhibited a sharp increase in expression beginning after birth, peaking on day 14, then decreasing and, finally, stabilizing; and (b) ventral tier neurons and dorsal tier cells from the lateral and the medial-dorsal mesencephalon showed only a slight increase in TH mRNA, reaching a plateau at P10. 3. The time course of the observed increase in TH gene expression in the first group, generally parallels the innervation of their target cells in the striatal matrix, suggesting that TH gene expression in these cells may be influenced by their postsynaptic cells or by the innervation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号