首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mutations in LMAN1 (ERGIC-53) and MCFD2 are the causes of a human genetic disorder, combined deficiency of coagulation factor V and factor VIII. LMAN1 is a type 1 transmembrane protein with homology to mannose-binding lectins. MCFD2 is a soluble EF-hand-containing protein that is retained in the endoplasmic reticulum through its interaction with LMAN1. We showed that endogenous LMAN1 and MCFD2 are present primarily in complex with each other with a 1:1 stoichiometry, although MCFD2 is not required for oligomerization of LMAN1. Using a cross-linking-immunoprecipitation assay, we detected a specific interaction of both LMAN1 and MCFD2 with factor VIII, with the B domain as the most likely site of interaction. We also present evidence that this interaction is independent of the glycosylation state of factor VIII but requires native calcium concentration in the endoplasmic reticulum. The interaction of MCFD2 with factor VIII appeared to be independent of LMAN1-MCFD2 complex formation. These results suggest that LMAN1 and MCFD2 form a cargo receptor complex and that the primary sorting signals residing in the B domain direct the binding of factor VIII to LMAN1-MCFD2 through calcium-dependent protein-protein interactions. MCFD2 may function to specifically recruit factor V and factor VIII to sites of transport vesicle budding within the endoplasmic reticulum lumen.  相似文献   

2.
LMAN1 is a glycoprotein receptor, mediating transfer from the ER to the ER-Golgi intermediate compartment. Together with the co-receptor MCFD2, it transports coagulation factors V and VIII. Mutations in LMAN1 and MCFD2 can cause combined deficiency of factors V and VIII (F5F8D). We present the crystal structure of the LMAN1/MCFD2 complex and relate it to patient mutations. Circular dichroism data show that the majority of the substitution mutations give rise to a disordered or severely destabilized MCFD2 protein. The few stable mutation variants are found in the binding surface of the complex leading to impaired LMAN1 binding and F5F8D.

Structured summary

MINT-7557086: lman1 (uniprotkb:P49257) and mcfd2 (uniprotkb:Q8NI22) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

3.
Abstract

Combined factor deficiency (F5F8D) is a rare autosomal recessive disorder caused by mutations in the LMAN1 or MCFD2 genes. It has been proposed that this pathogenic process occurs via a multi-step pathway involving metal loss, EF-hand-Ca2+ dissociation and assembly of misfolded MCFD2-LMAN1 complex. Here, we have investigated the solution conformations of the MCFD2(D81H,V100D) protein mutant through extensive molecular dynamics (MD) simulations. The V100D, one of the many MCFD2 mutations known to be associated to F5F8D, is difficult to be reconciled with the pathway model because it is located far from the metal sites and the MCFD2/LMAN1 interface. Consequently, an inspection of all the steps involved in D81H/V100D MCFD2 misfolding is expected to provide hints in the understanding of the molecular basis of the disease. A comparison with parallel studies carried out for the Wild-Type (WT) MCFD2 pointed out that the mutation decreases the affinity of the protein for the Ca2+ ion. Multiple explicit solvents MD simulations (50 ns) performed on the two proteins revealed that in the WT protein, stable H-bond network and compact hydrophobic core region are created thus confirming a pivotal role of this region in driving the biophysical properties of the entire protein. In fact it is shown that the V100D mutation, although located far away the EF-hand domain, may induce subtle modification in the structural core of MCFD2 leading to the loosening of metal binding and to the formation of metastable intermediate states along the unfolding pathway. The native-like hydrophobic cluster formed near the V100 residue in the wild-type protein is disrupted by the negatively charged Asparagine residue. Furthermore, the presence of the D81H mutation in the EF-1 hand domain may also increase the protein unfolding rate and consequently prevent the formation of the MCFD2-LMAN1 complex. The detailed structural insights obtained from our large-scale simulations complement the clinical features and offer useful insights into the mechanism behind MCFD2 protein misfolding.  相似文献   

4.
Human MCFD2 (multiple coagulation factor deficiency 2) is a 16-kDa protein known to participate in transport of the glycosylated human coagulation factors V and VIII along the secretory pathway. Mutations in MCFD2 or in its binding partner, the membrane-bound transporter ERGIC (endoplasmic reticulum-Golgi intermediate compartment)-53, cause a mild form of inherited hemophilia known as combined deficiency of factors V and VIII (F5F8D). While ERGIC-53 is known to be a lectin-type mannose binding protein, the role of MCFD2 in the secretory pathway is comparatively unclear. MCFD2 has been shown to bind both ERGIC-53 and the blood coagulation factors, but little is known about the binding sites or the true function of the protein. In order to facilitate understanding of the function of MCFD2 and the mechanism by which mutations in the protein cause F5F8D, we have determined the structure of human MCFD2 in solution by NMR. Our results show the folding of MCFD2 to be dependent on availability of calcium ions. The protein, which is disordered in the apo state, folds upon binding of Ca2+ to the two EF-hand motifs of its C-terminus, while retaining some localized disorder in the N-terminus. NMR studies on two disease-causing mutant variants of MCFD2 show both to be predominantly disordered, even in the presence of calcium ions. These results provide an explanation for the previously observed calcium dependence of the MCFD2-ERGIC-53 interaction and, furthermore, clarify the means by which mutations in this protein result in inefficient secretion of blood coagulation factors V and VIII.  相似文献   

5.
A recent chemical footprinting study in our laboratory suggested that region 1803–1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803–1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803–1810 and 1811–1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811–1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811–1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803–1810 and FVIII/FV 1811–1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811–1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811–1818 contributes to FIXa binding. Both regions 1803–1810 and 1811–1818 contribute to FVIIIa stability.  相似文献   

6.
In eukaryotic Na+/Ca2+ exchangers (NCX) the Ca2+ binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca2+ sensor (Ca3–Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca2+-driven interdomain switch has been described, albeit how it couples Ca2+ binding with signal propagation remains unclear. To resolve the dynamic features of Ca2+-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium 45Ca2+ binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg2+-bound forms of CBD12 are highly flexible, whereas Ca2+ binding to the Ca3–Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca2+ is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca2+]-dependent allosteric regulation occurs. Low affinity sites (Ca1–Ca2) of CBD1 do not contribute to Ca2+-induced population shift, but the occupancy of these sites by 1 mm Mg2+ shifts the Ca2+ affinity (Kd) at the neighboring Ca3–Ca4 sites from ∼ 50 nm to ∼ 200 nm and thus, keeps the primary Ca2+ sensor (Ca3–Ca4 sites) within a physiological range. Thus, Ca2+ binding to the Ca3–Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.  相似文献   

7.
Histamine is an important immunomodulator involved in allergic reactions and inflammatory responses. In endothelial cells, histamine induces Ca2+ mobilization by releasing Ca2+ from the endoplasmic reticulum and eliciting Ca2+ entry across the plasma membrane. Herein, we show that histamine-evoked Ca2+ entry in human umbilical vein endothelial cells (HUVECs) is sensitive to blockers of Ca2+ release-activated Ca2+ (CRAC) channels. RNA interference against STIM1 or Orai1, the activating subunit and the pore-forming subunit of CRAC channels, respectively, abolishes this histamine-evoked Ca2+ entry. Furthermore, overexpression of dominant-negative CRAC channel subunits inhibits while co-expression of both STIM1 and Orai1 enhances histamine-induced Ca2+ influx. Interestingly, gene silencing of STIM1 or Orai1 also interrupts the activation of calcineurin/nuclear factor of activated T-cells (NFAT) pathway and the production of interleukin 8 triggered by histamine in HUVECs. Collectively, these results suggest a central role of STIM1 and Orai1 in mediating Ca2+ mobilization linked to inflammatory signaling of endothelial cells upon histamine stimulation.  相似文献   

8.
Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 Å) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed β-strand of the C2 domain, Trp2313-His2315. This result indicates that the Trp2313-His2315 segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.  相似文献   

9.
Cargo selectivity of the ERGIC-53/MCFD2 transport receptor complex   总被引:1,自引:0,他引:1  
Exit of soluble secretory proteins from the endoplasmic reticulum (ER) can occur by receptor-mediated export as exemplified by blood coagulation factors V and VIII. Their efficient secretion requires the membrane lectin ER Golgi intermediate compartment protein-53 (ERGIC-53) and its soluble luminal interaction partner multiple coagulation factor deficiency protein 2 (MCFD2), which form a cargo receptor complex in the early secretory pathway. ERGIC-53 also interacts with the two lysosomal glycoproteins cathepsin Z and cathepsin C. Here, we tested the subunit interdependence and cargo selectivity of ERGIC-53 and MCFD2 by short interference RNA-based knockdown. In the absence of ERGIC-53, MCFD2 was secreted, whereas knocking down MCFD2 had no effect on the localization of ERGIC-53. Cargo binding properties of the ERGIC-53/MCFD2 complex were analyzed in vivo using yellow fluorescent protein fragment complementation. We found that MCFD2 is dispensable for the binding of cathepsin Z and cathepsin C to ERGIC-53. The results indicate that ERGIC-53 can bind cargo glycoproteins in an MCFD2-independent fashion and suggest that MCFD2 is a recruitment factor for blood coagulation factors V and VIII.  相似文献   

10.
Na+/Ca2+ exchangers (NCX) constitute a major Ca2+ export system that facilitates the re-establishment of cytosolic Ca2+ levels in many tissues. Ca2+ interactions at its Ca2+ binding domains (CBD1 and CBD2) are essential for the allosteric regulation of Na+/Ca2+ exchange activity. The structure of the Ca2+-bound form of CBD1, the primary Ca2+ sensor from canine NCX1, but not the Ca2+-free form, has been reported, although the molecular mechanism of Ca2+ regulation remains unclear. Here, we report crystal structures for three distinct Ca2+ binding states of CBD1 from CALX, a Na+/Ca2+ exchanger found in Drosophila sensory neurons. The fully Ca2+-bound CALX-CBD1 structure shows that four Ca2+ atoms bind at identical Ca2+ binding sites as those found in NCX1 and that the partial Ca2+ occupancy and apoform structures exhibit progressive conformational transitions, indicating incremental regulation of CALX exchange by successive Ca2+ binding at CBD1. The structures also predict that the primary Ca2+ pair plays the main role in triggering functional conformational changes. Confirming this prediction, mutagenesis of Glu455, which coordinates the primary Ca2+ pair, produces dramatic reductions of the regulatory Ca2+ affinity for exchange current, whereas mutagenesis of Glu520, which coordinates the secondary Ca2+ pair, has much smaller effects. Furthermore, our structures indicate that Ca2+ binding only enhances the stability of the Ca2+ binding site of CBD1 near the hinge region while the overall structure of CBD1 remains largely unaffected, implying that the Ca2+ regulatory function of CBD1, and possibly that for the entire NCX family, is mediated through domain interactions between CBD1 and the adjacent CBD2 at this hinge.  相似文献   

11.
Combined factor deficiency (F5F8D) is a rare autosomal recessive disorder caused by mutations in the LMAN1 or MCFD2 genes. It has been proposed that this pathogenic process occurs via a multi-step pathway involving metal loss, EF-hand-Ca21 dissociation and assembly of misfolded MCFD2-LMAN1 complex. Here, we have investigated the solution conformations of the MCFD2((D81H,V100D)) protein mutant through extensive molecular dynamics (MD) simulations. The V100D, one of the many MCFD2 mutations known to be associated to F5F8D, is difficult to be reconciled with the pathway model because it is located far from the metal sites and the MCFD2/LMAN1 interface. Consequently, an inspection of all the steps involved in D81H/V100D MCFD2 misfolding is expected to provide hints in the understanding of the molecular basis of the disease. A comparison with parallel studies carried out for the Wild-Type (WT) MCFD2 pointed out that the mutation decreases the affinity of the protein for the Ca21 ion. Multiple explicit solvents MD simulations (50_ns) performed on the two proteins revealed that in the WT protein, stable H-bond network and compact hydrophobic core region are created thus confirming a pivotal role of this region in driving the biophysical properties of the entire protein. In fact it is shown that the V100D mutation, although located far away the EF-hand domain, may induce subtle modification in the structural core of MCFD2 leading to the loosening of metal binding and to the formation of metastable intermediate states along the unfolding pathway. The native-like hydrophobic cluster formed near the V100 residue in the wild-type protein is disrupted by the negatively charged Asparagine residue. Furthermore, the presence of the D81H mutation in the EF-1 hand domain may also increase the protein unfolding rate and consequently prevent the formation of the MCFD2-LMAN1 complex. The detailed structural insights obtained from our large-scale simulations complement the clinical features and offer useful insights into the mechanism behind MCFD2 protein misfolding.  相似文献   

12.
13.
Store-operated Ca2+ entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca2+ sensor STIM1. Ca2+ entry occurs through the plasma membrane resident Ca2+ channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca2+ store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels.  相似文献   

14.
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) and the NMDA-type glutamate receptor are key regulators of synaptic plasticity underlying learning and memory. Direct binding of CaMKII to the NMDA receptor subunit GluN2B (formerly known as NR2B) (i) is induced by Ca2+/CaM but outlasts this initial Ca2+-stimulus, (ii) mediates CaMKII translocation to synapses, and (iii) regulates synaptic strength. CaMKII binds to GluN2B around S1303, the major CaMKII phosphorylation site on GluN2B. We show here that a phospho-mimetic S1303D mutation inhibited CaM-induced CaMKII binding to GluN2B in vitro, presenting a conundrum how binding can occur within cells, where high ATP concentration should promote S1303 phosphorylation. Surprisingly, addition of ATP actually enhanced the binding. Mutational analysis revealed that this positive net effect was caused by four modulatory effects of ATP, two positive (direct nucleotide binding and CaMKII T286 autophosphorylation) and two negative (GluN2B S1303 phosphorylation and CaMKII T305/6 autophosphorylation). Imaging showed positive regulation by nucleotide binding also within transfected HEK cells and neurons. In fact, nucleotide binding was a requirement for efficient CaMKII interaction with GluN2B in cells, while T286 autophosphorylation was not. Kinetic considerations support a model in which positive regulation by nucleotide binding and T286 autophosphorylation occurs faster than negative modulation by GluN2B S1303 and CaMKII T305/6 phosphorylation, allowing efficient CaMKII binding to GluN2B despite the inhibitory effects of the two slower reactions.  相似文献   

15.
CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain.  相似文献   

16.
Calreticulin is a multifunctional Ca2+-binding protein of the endoplasmic reticulum of most eukaryotic cells. The 56 kDa Calreticulin glycoprotein isolated from spinach (Spinacia oleracea L.) leaves was N-deglycosylated by PNGase-F digestion. The carbohydrate moiety was isolated by gel permeation chromatography and purified by high-pH anion-exchange chromatography. The fractions were investigated by 500 MHz1H-NMR spectroscopy, in combination with monosaccharide analysis and fast-atom bombardment-mass spectrometry. The following carbohydrate structure could be established as the major component (Man8GlcNAc2): Heterogeneity was demonstrated by the presence of two minor components being Man7GlcNAc2 lacking a terminal residue (D1 or D3), compared to the major component. A cross-reactivity with an antibody against the endoplasmic reticulum retention signal HDEL was also found.  相似文献   

17.
Cytoplasmic polyamines block the fast-activating vacuolar cation channel   总被引:9,自引:1,他引:8  
The fast-activating vacuolar (FV) channel dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Since polyamines are known to increase in plant cells in response to stress, the regulation of FV channels by polyamines was investigated. Patch-clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. The trivalent polyamine spermidine and the tetravalent polyamine spermine blocked FV channels with Kd≈ 100 μM and Kd≈ 5 μM, respectively. Increasing cytosolic and vacuolar Ca2+ had no effect on putrescine and spermidine binding to FV channels but slightly decreased the affinity for spermine. The inhibition of FV channels by all three polyamines was not voltage-dependent. This points to a different mode of binding compared to inward rectifier K+ channels and Ca2+-permeable glutamate receptor channels from animal cells, which show rectification due to a voltage-dependent block by polyamines. In plant cells, the common polyamines (putrescine, spermidine and spermine) are likely to mediate a salt stress-induced decrease of ion flux across the vacuolar membrane by blocking FV channels.  相似文献   

18.
Excessive Ca2+ fluxes from the endoplasmic reticulum to the mitochondria result in apoptotic cell death. Bcl-2 and Bcl-XL proteins exert part of their anti-apoptotic function by directly targeting Ca2+-transport systems, like the endoplasmic reticulum-localized inositol 1,4,5-trisphosphate receptors (IP3Rs) and the voltage-dependent anion channel 1 (VDAC1) at the outer mitochondrial membranes. We previously demonstrated that the Bcl-2 homology 4 (BH4) domain of Bcl-2 protects against Ca2+-dependent apoptosis by binding and inhibiting IP3Rs, although the BH4 domain of Bcl-XL was protective independently of binding IP3Rs. Here, we report that in contrast to the BH4 domain of Bcl-2, the BH4 domain of Bcl-XL binds and inhibits VDAC1. In intact cells, delivery of the BH4-Bcl-XL peptide via electroporation limits agonist-induced mitochondrial Ca2+ uptake and protects against staurosporine-induced apoptosis, in line with the results obtained with VDAC1−/− cells. Moreover, the delivery of the N-terminal domain of VDAC1 as a synthetic peptide (VDAC1-NP) abolishes the ability of BH4-Bcl-XL to suppress mitochondrial Ca2+ uptake and to protect against apoptosis. Importantly, VDAC1-NP did not affect the ability of BH4-Bcl-2 to suppress agonist-induced Ca2+ release in the cytosol or to prevent apoptosis, as done instead by an IP3R-derived peptide. In conclusion, our data indicate that the BH4 domain of Bcl-XL, but not that of Bcl-2, selectively targets VDAC1 and inhibits apoptosis by decreasing VDAC1-mediated Ca2+ uptake into the mitochondria.  相似文献   

19.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   

20.
A single calcium (Ca2+) binding site within the canonical EF-hand loop was thought to govern the stromal interaction molecule-1 (STIM1) structural changes that lead to activation of Orai1 Ca2+ channels. Recent work by Gudlur et al., published in Nat Commun [9(1):4536], suggests that the STIM1 endoplasmic reticulum (ER) luminal domain has ∼5 additional Ca2+ binding sites, which underlie a surprising new proposal for Ca2+ sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号