共查询到20条相似文献,搜索用时 15 毫秒
1.
Ana Agostinho Bettina Meier Remi Sonneville Marlène Jagut Alexander Woglar Julian Blow Verena Jantsch Anton Gartner 《PLoS genetics》2013,9(7)
Holliday junctions (HJs) are cruciform DNA structures that are created during recombination events. It is a matter of considerable importance to determine the resolvase(s) that promote resolution of these structures. We previously reported that C. elegans GEN-1 is a symmetrically cleaving HJ resolving enzyme required for recombinational repair, but we could not find an overt role in meiotic recombination. Here we identify C. elegans proteins involved in resolving meiotic HJs. We found no evidence for a redundant meiotic function of GEN-1. In contrast, we discovered two redundant HJ resolution pathways likely coordinated by the SLX-4 scaffold protein and also involving the HIM-6/BLM helicase. SLX-4 associates with the SLX-1, MUS-81 and XPF-1 nucleases and has been implicated in meiotic recombination in C. elegans. We found that C. elegans [mus-81; xpf-1], [slx-1; xpf-1], [mus-81; him-6] and [slx-1; him-6] double mutants showed a similar reduction in survival rates as slx-4. Analysis of meiotic diakinesis chromosomes revealed a distinct phenotype in these double mutants. Instead of wild-type bivalent chromosomes, pairs of “univalents” linked by chromatin bridges occur. These linkages depend on the conserved meiosis-specific transesterase SPO-11 and can be restored by ionizing radiation, suggesting that they represent unresolved meiotic HJs. This suggests the existence of two major resolvase activities, one provided by XPF-1 and HIM-6, the other by SLX-1 and MUS-81. In all double mutants crossover (CO) recombination is reduced but not abolished, indicative of further redundancy in meiotic HJ resolution. Real time imaging revealed extensive chromatin bridges during the first meiotic division that appear to be eventually resolved in meiosis II, suggesting back-up resolution activities acting at or after anaphase I. We also show that in HJ resolution mutants, the restructuring of chromosome arms distal and proximal to the CO still occurs, suggesting that CO initiation but not resolution is likely to be required for this process. 相似文献
2.
3.
Dopamine Modulation of Avoidance Behavior in Caenorhabditis elegans Requires the NMDA Receptor NMR-1
The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine. 相似文献
4.
Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways. 相似文献
5.
Julien Burger Jorge Merlet Nicolas Tavernier Bénédicte Richaudeau Andreas Arnold Rafal Ciosk Bruce Bowerman Lionel Pintard 《PLoS genetics》2013,9(3)
The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2LRR-1 (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple levels to control germline development. CRL2LRR-1 promotes germ cell proliferation by counteracting the DNA replication ATL-1 checkpoint pathway. CRL2LRR-1 also participates in the mitotic proliferation/meiotic entry decision, presumably controlling the stability of meiotic promoting factors in the mitotic zone of the germline. Finally, CRL2LRR-1 inhibits the first steps of meiotic prophase by targeting in mitotic germ cells degradation of the HORMA domain-containing protein HTP-3, required for loading synaptonemal complex components onto meiotic chromosomes. Given its widespread evolutionary conservation, CUL-2 may similarly regulate germline development in other organisms as well. 相似文献
6.
W Zhang N Miley MS Zastrow AJ Macqueen A Sato K Nabeshima E Martinez-Perez S Mlynarczyk-Evans PM Carlton AM Villeneuve 《PLoS genetics》2012,8(8):e1002880
During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification. 相似文献
7.
8.
Homologous recombination (HR) is essential for the repair of blocked or collapsed replication forks and for the production of crossovers between homologs that promote accurate meiotic chromosome segregation. Here, we identify HIM-18, an ortholog of MUS312/Slx4, as a critical player required in vivo for processing late HR intermediates in Caenorhabditis elegans. DNA damage sensitivity and an accumulation of HR intermediates (RAD-51 foci) during premeiotic entry suggest that HIM-18 is required for HR–mediated repair at stalled replication forks. A reduction in crossover recombination frequencies—accompanied by an increase in HR intermediates during meiosis, germ cell apoptosis, unstable bivalent attachments, and subsequent chromosome nondisjunction—support a role for HIM-18 in converting HR intermediates into crossover products. Such a role is suggested by physical interaction of HIM-18 with the nucleases SLX-1 and XPF-1 and by the synthetic lethality of him-18 with him-6, the C. elegans BLM homolog. We propose that HIM-18 facilitates processing of HR intermediates resulting from replication fork collapse and programmed meiotic DSBs in the C. elegans germline. 相似文献
9.
In wild-type Caenorhabditis elegans, the hermaphrodite gonad is a symmetrical structure, whereas the male gonad is asymmetric. Two cellular processes are critical for the generation of these sexually dimorphic gonadal shapes during early larval development. First, regulatory "leader" cells that control tube extension and gonadal shape are generated. Second, the somatic gonadal precursor cells migrate and become rearranged to establish the adult pattern. In this paper, we introduce sys-1, a gene required for early organization of the hermaphrodite, but not the male, gonad. The sys-1(q544) allele behaves genetically as a strong loss-of-function mutant and putative null. All hermaphrodites that are homozygous for sys-1(q544) possess a grossly malformed gonad and are sterile; in contrast, sys-1(q544) males exhibit much later and only partially penetrant gonadal defects. The sys-1(q544) hermaphrodites exhibit two striking early gonadal defects. First, the cell lineages of Z1 and Z4, the somatic gonadal progenitor cells, produce extra cells during L2, but the regulatory cells that control gonadal shape are not generated. Second, somatic gonadal precursor cells do not cluster centrally during late L2, and the somatic gonadal primordium typical of hermaphrodites is not established. In contrast, the early male gonadal lineage is asymmetric as normal, the somatic gonadal primordium typical of males is established correctly, and the male adult gonadal structures can be normal. We conclude that the primary role of sys-1 is to establish the shape and polarity of the hermaphrodite gonad. 相似文献
10.
11.
Invertebrates and in Drosophila, lamins and lamin-associated proteins are primary targets for cleavage by caspases. Eliminating mammalian lamins causes apoptosis, whereas expressing mutant lamins that cannot be cleaved by caspase-6 delay apoptosis. Caenorhabditis elegans has a single lamin protein, Ce-lamin, and a caspase, CED-3, that is responsible for most if not all somatic apoptosis. In this study we show that in C. elegans embryos induced to undergo apoptosis Ce-lamin is degraded surprisingly late. In such embryos CED-4 translocated to the nuclear envelope but the cytological localization of Ce-lamin remained similar to that in wild-type embryos. TUNEL labeling indicated that Ce-lamin was degraded only after DNA is fragmented. Ce-lamin, Ce-emerin, or Ce-MAN1 were not cleaved by recombinant CED-3, showing that these lamina proteins are not substrates for CED-3 cleavage. These results suggest that lamin cleavage probably is not essential for apoptosis in C. elegans. 相似文献
12.
The nematode Caenorhabditis elegans has proven a robust genetic model for studies of aging, including the roles of oxidative stress and protein damage. In this review, we focus on the genetics of select long-lived (e.g., age-1, daf-2, daf-16) and short-lived (e.g., mev-1) mutants that have proven useful in revealing the relationships that exist among oxidative stress, life span, and protein oxidation. The former are known to control an insulin/IGF-1-like pathway in C. elegans, while the latter affect mitochondrial function. 相似文献
13.
Ukrae Cho Stephanie M. Zimmerman Ling-chun Chen Elliot Owen Jesse V. Kim Stuart K. Kim Thomas J. Wandless 《PloS one》2013,8(8)
Destabilizing domains are conditionally unstable protein domains that can be fused to a protein of interest resulting in degradation of the fusion protein in the absence of stabilizing ligand. These engineered protein domains enable rapid, reversible and dose-dependent control of protein expression levels in cultured cells and in vivo. To broaden the scope of this technology, we have engineered new destabilizing domains that perform well at temperatures of 20–25°C. This raises the possibility that our technology could be adapted for use at any temperature. We further show that these new destabilizing domains can be used to regulate protein concentrations in C. elegans. These data reinforce that DD can function in virtually any organism and temperature. 相似文献
14.
Full-length recombinant transposase Tc1A from Caenorhabditis elegans (343 amino acids) expressed in Escherichia coli BL21 in inclusion bodies has been purified in a high yield in a soluble form. The procedure includes denaturation of the inclusion bodies followed by refolding of the Tc1A protein by gel filtration. This last step is absolutely crucial to give a high yield of soluble and active protein since it allows the physical separation of the aggregates from intermediates that give rise to correctly refolded protein. This step is very sensitive to the concentration of protein. Good yields of refolded protein are obtained by refolding 2 to 12 mg of denatured protein. The other purification steps involve the initial use of gel filtration under denaturing conditions and a final step of ion-exchange chromatography. Biological activity of the purified protein was confirmed in an in vitro transposon excision assay and its DNA-binding capacity by UV crosslinking. This new Tc1A purification procedure gives a yield of 12-16 mg/liter E. coli culture, in a form suitable for crystallization studies. 相似文献
15.
Genetic Studies of Mei-1 Gene Activity during the Transition from Meiosis to Mitosis in Caenorhabditis Elegans 总被引:1,自引:1,他引:1 下载免费PDF全文
Genetic evidence suggests that the mei-1 locus of Caenorhabditis elegans encodes a maternal product required for female meiosis. However, a dominant gain-of-function allele, mei-1(ct46), can support normal meiosis but causes defects in subsequent mitotic spindles. Previously identified intragenic suppressors of ct46 lack functional mei-1 activity; null alleles suppress only in cis but other alleles arise frequently and suppress both in cis and in trans. Using a different screen for suppressors of the dominant ct46 defect, the present study describes another type of intragenic mutation that also arises at high frequency. These latter alleles appear to have reduced meiotic activity and retain a weakened dominant effect. Characterization of these alleles in trans-heterozygous combinations with previously identified mei-1 alleles has enabled us to define more clearly the role of the mei-1 gene product during normal embryogenesis. We propose that a certain level of mei-1 activity is required for meiosis but must be eliminated prior to mitosis. The dominant mutation causes mei-1 activity to function at mitosis; intragenic trans-suppressors act in an antimorphic manner to inactivate multimeric mei-1 complexes. We propose that inactivation of meiosis-specific functions may be an essential precondition of mitosis; failure to eliminate such functions may allow ectopic meiotic activity during mitosis and cause embryonic lethality. 相似文献
16.
Schild-Prüfert K Saito TT Smolikov S Gu Y Hincapie M Hill DE Vidal M McDonald K Colaiácovo MP 《Genetics》2011,189(2):411-421
Four different SYP proteins (SYP-1, SYP-2, SYP-3, and SYP-4) have been proposed to form the central region of the synaptonemal complex (SC) thereby bridging the axes of paired meiotic chromosomes in Caenorhabditis elegans. Their interdependent localization suggests that they may interact within the SC. Our studies reveal for the first time how these SYP proteins are organized in the central region of the SC. Yeast two-hybrid and co-immunoprecipitation studies show that SYP-1 is the only SYP protein that is capable of homotypic interactions, and is able to interact with both SYP-2 and SYP-3 directly, whereas SYP-2 and SYP-3 do not seem to interact with each other. Specifically, the coiled-coil domain of SYP-1 is required both for its homotypic interactions and its interaction with the C-terminal domain of SYP-2. Meanwhile, SYP-3 interacts with the C-terminal end of SYP-1 via its N-terminal domain. Immunoelectron microscopy analysis provides insight into the orientation of these proteins within the SC. While the C-terminal domain of SYP-3 localizes in close proximity to the chromosome axes, the N-terminal domains of both SYP-1 and SYP-4, as well as the C-terminal domain of SYP-2, are located in the middle of the SC. Taking into account the different sizes of these proteins, their interaction abilities, and their orientation within the SC, we propose a model of how the SYP proteins link the homologous axes to provide the conserved structure and width of the SC in C. elegans. 相似文献
17.
Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans 总被引:1,自引:0,他引:1
The role of cell-cell interaction in the postembryonic development of nongonadal tissues in the nematode Caenorhabditis elegans has been explored by selective cell ablation with a laser microbeam. Examples have been found of induction and of regulation in cell lineage and fate. Regulation in which one cell precisely or partially replaces another is seen, but only in certain groups of hypodermal cells which resemble one another closely; cells which are unique are not replaced in this way. The regulation of cell form is more widespread and less restrictive. 相似文献
18.
The amenability of Caenorhabditis elegans against pathogen provides a valuable tool for studying host–pathogen interactions. Physiological experiments revealed that
the P. aeruginosa was able to kill C. elegans efficiently. The effects of P. aeruginosa PA14, PAO1 and their isolated lipopolysaccharide (LPS) on the host system were analyzed. The LPS at higher concentrations
(≥2 mg/ml) was toxic to the host animals. Kinetic studies using qPCR revealed the regulation of host-specific candidate antimicrobial
genes during pathogen-mediated infections. In addition, the pathogen-specific virulent gene, exoT expression, was anlyzed and found to be varied during the interactions with the host system. Ability of the pathogens to
modify their internal machinery in the presence of the host was analyzed by XRD, FTIR and PCA. LPS isolated from pathogens
upon exposure to C. elegans showed modifications at their functional regions. LPS from PAO1 showed difference in d-spacing angle (Å) and °2Th position.
FTIR spectra revealed alterations in polysaccharide (1,200–900 cm−1) and fatty acid (3,000–2,800 cm−1) regions of LPS from P. aeruginosa PAO1 exposed to the host system. These data provide additional insights on how the pathogens subvert its own and host machinery
during interactions. 相似文献
19.
In Caenorhabditis elegans, cell migration is guided by localized cues, including molecules such as EGL-17/FGF and UNC-6/netrin. These external cues are linked to an intracellular response to migrate, at least in part, by CED-5, a homolog of DOCK180/MBC, and MIG-2, a Rac-like GTPase. In addition, metalloproteases are required for a cell migration that controls organ shape. 相似文献
20.
Jung Hyun Lee Jinuk Kong Ju Yeon Jang Ji Seul Han Yul Ji Junho Lee Jae Bum Kim 《Molecular and cellular biology》2014,34(22):4165-4176
Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis. 相似文献