首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Effective vaccination programs have dramatically reduced the number of measles-related deaths globally. Although all the available data suggest that measles eradication is biologically feasible, a structural and biochemical basis for the single serotype nature of measles virus (MV) remains to be provided. The hemagglutinin (H) protein, which binds to two discrete proteinaceous receptors, is the major neutralizing target. Monoclonal antibodies (MAbs) recognizing distinct epitopes on the H protein were characterized using recombinant MVs encoding the H gene from different MV genotypes. The effects of various mutations on neutralization by MAbs and virus fitness were also analyzed, identifying the location of five epitopes on the H protein structure. Our data in the present study demonstrated that the H protein of MV possesses at least two conserved effective neutralizing epitopes. One, which is a previously recognized epitope, is located near the receptor-binding site (RBS), and thus MAbs that recognize this epitope blocked the receptor binding of the H protein, whereas the other epitope is located at the position distant from the RBS. Thus, a MAb that recognizes this epitope did not inhibit the receptor binding of the H protein, rather interfered with the hemagglutinin-fusion (H-F) interaction. This epitope was suggested to play a key role for formation of a higher order of an H-F protein oligomeric structure. Our data also identified one nonconserved effective neutralizing epitope. The epitope has been masked by an N-linked sugar modification in some genotype MV strains. These data would contribute to our understanding of the antigenicity of MV and support the global elimination program of measles.  相似文献   

5.
6.
7.
Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-Å crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 Å, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled with the multiple critical roles played by Ebola virus VP35 proteins, highlight the viability of VP35 as a potential target for therapeutic development.  相似文献   

8.
王艳  李丹  马艳  韩悦  郭军巧 《病毒学报》2011,27(1):75-78
本研究用Vero/Slam细胞首次从辽宁省2008年流行性腮腺炎暴发和散发患者的临床标本中分离到3株流行性腮腺炎野病毒(Mumps virus,MuV),应用逆转录-聚合酶链反应(RT-PCR)针对MuV分离株的包括SH基因的1 028个核苷酸片段进行PCR扩增,将扩增产物连接在pMD19-T载体后转化到大肠杆菌中进行克隆。通过蓝白斑筛选,将鉴定为阳性的白色菌落进行核苷酸序列测定分析。将这3株MuV结合从GenBank下载的世界卫生组织(WHO)MuV基因型参考株在基于WHO基因定型靶序列SH基因的316核苷酸片段构建基因亲缘关系树,一起进行分子流行病学研究。结果提示:辽宁省2008年3株MuV分离株的核苷酸和氨基酸同源性在98.7%~100%和94.7%~100%之间,其中LN-2008-001-06与LN-2008-001-10序列完全一致;与F基因型参考株序列相比,核苷酸和氨基酸同源性分别为92.4%~96.2%和84.2%~94.7%。提示辽宁省2008年3株流行性腮腺炎野病毒分离株均属F基因型。由于此次毒株数量太少,尚不能说明F基因型是否为辽宁省的优势基因型,需进一步扩大范围加强监测。  相似文献   

9.
In 1993, mumps with a high incidence of aseptic meningitis became prevalent in Akita prefecture, Japan. Three mumps virus isolates obtained from the nonvaccine-associated cases lacked the BamHI restriction cleavage site of the P gene, like the Urabe strain (Yamada, A. et al, Vaccine 8: 553-557). However, four additional nucleotide substitutions were found in the determined region of 157 bp. Fourteen of 19 cases from which mumps virus showing the Urabe-like RFLP profile was detected were complicated with symptomatic meningitis, whereas there were only four cases of meningitis among 23 individuals infected with the wild type showing no Urabe-like RFLP profile (non-“Urabe-like” wild-type). The incidence of meningitis was over 70% among patients infected with the “Urabe-like” wild-type virus. The “Urabe-like” wild-type disappeared after February 1994 in the epidemic area and was replaced by the non-“Urabe-like” wild-type. Patients infected with the “Urabe-like” wild-type lived in a closed colony, in which there were two instances of transmission between siblings. Thus this outbreak was transient and narrowly localized.  相似文献   

10.
11.
双链RNA依赖性蛋白激酶的结构与作用   总被引:2,自引:0,他引:2  
dsRNA-依赖的蛋白激酶(PKR)在信号转导、细胞生长、分化和凋亡的控制中起重要作用。最近证实PKR是一个重要的凋亡效应物,是许多不同刺激物诱导凋亡的一个转导物,所以一些研究者开始关注是否PKR的调节可以作为一种新的抗肿瘤策略。由于PKR强大的生长抑制功能和促凋亡功能,使之可能成为又一个肿瘤基因治疗的靶点。该文介绍PKR的结构、活性调节、促凋亡活性及应用于肿瘤治疗的潜力。  相似文献   

12.
桩蛋白的结构与功能   总被引:5,自引:0,他引:5  
桩蛋白(paxillin)是近年来发现的一种信号蛋白,主要定位于黏着斑,包含LD模体、LIM结构域、SH2和SH3结合结构域,在整个分子中还散在着多种磷酸化位点,共同构成了桩蛋白的多结构域性结构。桩蛋白分子本身的酶活性尚不清楚,但很可能作为细胞内的一种接头蛋白与多种功能蛋白质结合。另外.作为黏着斑的重要组成部分,桩蛋白不仅参与了整合蛋白介导的信号转导和黏着斑的组装,在细胞黏附和迁移过程中也发挥了重要作用。  相似文献   

13.
A phosphoprotein (P) is found in all viruses of the Mononegavirales order. These proteins form homo-oligomers, fulfil similar roles in the replication cycles of the various viruses, but differ in their length and oligomerization state. Sequence alignments reveal no sequence similarity among proteins from viruses belonging to the same family. Sequence analysis and experimental data show that phosphoproteins from viruses of the Paramyxoviridae contain structured domains alternating with intrinsically disordered regions. Here, we used predictions of disorder of secondary structure, and an analysis of sequence conservation to predict the domain organization of the phosphoprotein from Sendai virus, vesicular stomatitis virus (VSV) and rabies virus (RV P). We devised a new procedure for combining the results from multiple prediction methods and locating the boundaries between disordered regions and structured domains. To validate the proposed modular organization predicted for RV P and to confirm that the putative structured domains correspond to autonomous folding units, we used two-hybrid and biochemical approaches to characterize the properties of several fragments of RV P. We found that both central and C-terminal domains can fold in isolation, that the central domain is the oligomerization domain, and that the C-terminal domain binds to nucleocapsids. Our results suggest a conserved organization of P proteins in the Rhabdoviridae family in concatenated functional domains resembling that of the P proteins in the Paramyxoviridae family.  相似文献   

14.
15.
16.
The atomic structure of the stable tetramerization domain of the measles virus phosphoprotein shows a tight four-stranded coiled coil. Although at first sight similar to the tetramerization domain of the Sendai virus phosphoprotein, which has a hydrophilic interface, the measles virus domain has kinked helices that have a strongly hydrophobic interface and it lacks the additional N-terminal three helical bundles linking the long helices.  相似文献   

17.
The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle.  相似文献   

18.
Rabies virus (RABV), which is transmitted via a bite wound caused by a rabid animal, infects peripheral nerves and then spreads to the central nervous system (CNS) before causing severe neurological symptoms and death in the infected individual. Despite the importance of this ability of the virus to spread from a peripheral site to the CNS (neuroinvasiveness) in the pathogenesis of rabies, little is known about the mechanism underlying the neuroinvasiveness of RABV. In this study, to obtain insights into the mechanism, we conducted comparative analysis of two fixed RABV strains, Nishigahara and the derivative strain Ni-CE, which cause lethal and asymptomatic infections, respectively, in mice after intramuscular inoculation. Examination of a series of chimeric viruses harboring the respective genes from Nishigahara in the genetic background of Ni-CE revealed that the Nishigahara phosphoprotein (P) gene plays a major role in the neuroinvasiveness by mediating infection of peripheral nerves. The results obtained from both in vivo and in vitro experiments strongly suggested that the Nishigahara P gene, but not the Ni-CE P gene, is important for stable viral replication in muscle cells. Further investigation based on the previous finding that RABV phosphoprotein counteracts the host interferon (IFN) system demonstrated that the Nishigahara P gene, but not the Ni-CE P gene, functions to suppress expression of the beta interferon (IFN-β) gene (Ifn-β) and IFN-stimulated genes in muscle cells. In conclusion, we provide the first data strongly suggesting that RABV phosphoprotein assists viral replication in muscle cells by counteracting the host IFN system and, consequently, enhances infection of peripheral nerves.  相似文献   

19.
Immuno-Electron Microscopy of the Morphogenesis of Mumps Virus   总被引:12,自引:8,他引:4       下载免费PDF全文
The fine structure of mumps virus-infected chick embryo fibroblastic cells was examined sequentially after viral inoculation. Intracytoplasmic nucleoprotein strands, similar to those described for parainfluenza viruses, were detectable in small aggregates between 36 and 48 hr. The peripheral strands of this viral component lie beneath and along an antigenically altered bulging portion of the cell membrane. The outermost strands are consistently parallel to the differentiated segment of the plasma membrane, which is invariably associated with surface projections. As has been found with other myxoviruses, mumps virus replicates by budding from the cell surface. The virus particle, roughly spherical in shape, has a size ranging from 1,000 to 8,000 A. Filamentous forms are rarely observed in the present culture system. Ferritin-conjugated antibody specifically labels the cytoplasmic nucleoprotein, the modified cell membrane, and the virus particle. Intranuclear inclusions of low electron density and morphologically different from those described in measles virus-infected HeLa and amnion cells were observed in the nucleus of several infected cells. Immuno-electron microscopic observations suggest that the nucleoprotein synthesis rate exceeds that of cell membrane differentiation into viral envelope. This difference results in the accumulation of viral nucleoprotein in large intracytoplasmic masses which can be demonstrated by electron microscopy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号