首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
NF-κB is activated by several cellular stresses. Of these, the TNFα-induced activation pathway has been examined in detail. It was recently reported that receptor-interacting protein 1 (RIP1) is involved in DNA damage-induced NF-κB activation by forming a complex with the p53 interacting death domain protein (PIDD) and NF-κB essential modulator (NEMO) in the nucleus, although the underlying mechanism of this interaction has yet to be clarified. This study shows that siRNA knock-down of arrest-defective 1 protein (ARD1) abrogated doxorubicin- but not TNFα-induced activation. Conversely, the over-expression of ARD1 greatly enhanced NF-κB activation induced by doxorubicin. Immunoprecipitation experiments revealed that ARD1 interacted with RIP1 via the acetyltransferase domain. Furthermore, the over-expression of several domain-deleted ARD1 constructs demonstrated that the N-terminal and acetyltransferase domains of ARD1 were required for doxorubicin-induced NF-κB activation. Treatment of deacetylase inhibitor, trichostatin A, significantly increased doxorubicin-induced NF-κB activation in the presence of ARD1 but not acetyltransferase-defective ARD1 mutant. Moreover, N-terminal domain-deleted ARD1 could not be localized in the nucleus in response to doxorubicin treatment. These data indicate that the interaction between ARD1 and RIP1 plays an important role in the DNA damage-induced NF-κB activation, and that the acetyltransferase activity of ARD1 and its localization in to the nucleus are involved in such stress response.  相似文献   

5.
6.
7.
Li  Ning  Song  Yuanbin  Zhao  Wei  Han  Tingting  Lin  Shuhui  Ramirez  Oscar  Liang  Li 《BMC physiology》2016,16(1):1-12
Background

Veterinary cardiology, especially electrocardiography, has shown major advancements for all animal species. Consequently, the number of ovine species used as experimental animals has increased to date. Few studies have been published on ovine systematic electrocardiography, particularly with respect to lamb physiology and neonatology. This study aimed to standardize the values of normal waves, complexes, and intervals of the electrocardiogram (ECG) in clinically Bergamasca healthy neonatal lambs, used as experimental animals. Serial computerized electrocardiography was performed in 10 male and 12 female neonates on the 1st, 7th, 14th, 21st, 28th, and 35th days of age. The following parameters were analyzed: heart rate and rhythm, duration and amplitude of waves, duration of intervals, and heart electrical axis.

Results

During the first 35 days of life, (1) the sinusal heart rhythm was predominant, (2) there was a progressive decrease in the heart rate and R and T wave amplitude, and (3) a progressive increase in the PR, QT, and RR intervals. Finally, we confirmed that various components of neonatal evolution were more discernible in the augmented unipolar leads (aVF), which we recommend should be preferentially used in future studies. No significant statistical alterations were observed between males and females in relation to the analyzed parameters.

Conclusions

The information assimilated in this study is anticipated to enhance the diagnosis of multiple congenital heart defects in Bergamasca lambs and could be implemented in studies that use ovine species as experimental models.

  相似文献   

8.
Development of hepatocellular carcinoma (HCC) is accompanied by a continuous increase in reactive oxygen species (ROS) levels. To investigate the primary source of ROS in liver cells, we used tumor necrosis factor-alpha (TNF-α) as stimulus. Applying inhibitors against the respiratory chain complexes, we identified mitochondria as primary source of ROS production. TNF-α altered mitochondrial integrity by mimicking a mild uncoupling effect in liver cells, as indicated by a 40% reduction in membrane potential and ATP depletion (35%). TNF-α-induced ROS production activated NF-κB 3.5-fold and subsequently enhanced migration up to 12.7-fold. This study identifies complex I and complex III of the mitochondrial respiratory chain as point of release of ROS upon TNF-α stimulation of liver cells, which enhances cell migration by activating NF-κB signalling.  相似文献   

9.
10.
1α,25-dihydroxyvitamin D(3) (calcitriol), the bioactive metabolite of vitamin D, modulates the activation and inhibits IgE production of anti-CD40 and IL-4 stimulated human peripheral B cells. Engagement of CD40 results in NF-κB p50 activation, which is essential for the class switch to IgE. Herein, we investigated by which mechanism calcitriol modulates NF-κB mediated activation of human na?ve B cells. Na?ve B cells were predominantly targeted by calcitriol in comparison with memory B cells as shown by pronounced induction of the VDR target gene cyp24a1. Vitamin D receptor activation resulted in a strongly reduced p105/p50 protein and mRNA expression in human na?ve B cells. This effect is mediated by impaired nuclear translocation of p65 and consequently reduced binding of p65 to its binding site in the p105 promoter. Our data indicate that the vitamin D receptor reduces NF-κB activation by interference with NF-κB p65 and p105. Thus, the vitamin D receptor inhibits costimulatory signal transduction in na?ve B cells, namely by reducing CD40 signaling.  相似文献   

11.
Histamine, an important chemical mediator, has been shown to regulate inflammation and allergic responses. Stimulation of histamine receptors results in a significant increase in cytoplasmic Ca2+, which could be mediated by inositol trisphosphate (IP3)-dependent store-operated Ca2+ channels (SOC). However, the link between histamine-mediated signaling and activation of inflammatory genes such as cyclooxygenase 2 (COX-2) is still unknown. Our study indicated that the COX-2 protein was highly expressed in human lung cancer cells. Following stimulation with 10 μM of histamine, both store-operated Ca2+ entry (SOCE) and COX-2 gene expression were evoked. Histamine-mediated COX-2 activation can be prevented by 2-APB and SKF-96365, SOC channel inhibitors. In addition, deletion analysis of the COX-2 promoter suggested that the region between −80 bp and −250 bp, which contains NFκB binding sites, is the key element for histamine-mediated signaling. Knocking down ORAI1, one of the essential molecules of store-operated calcium channels, attenuated histamine-mediated COX-2 expression and NFκB activation. These results indicated that ORAI1-mediated NFκB activation was an important signaling pathway, responsible for transmitting histamine signals that trigger inflammatory reactions.  相似文献   

12.
Hypoxia of skin is an important physiopathological process in many diseases, such as pressure ulcer, diabetic ulcer, and varicose ulcer. Although cellular injury and inflammation have been involved in hypoxia-induced dermatic injury, the underlying mechanisms remain largely unknown. This study was conducted to investigate the effects of cobalt chloride (CoCl2), a hypoxia-mimicking agent, on human skin keratinocytes (HaCaT cells) and to explore the possible molecular mechanisms. Exposure of HaCaT cells to CoCl2 reduced cell viability and caused overproduction of reactive oxygen species (ROS) and oversecretion of interleukin-6 (IL-6) and interleukin-8 (IL-8). Importantly, CoCl2 exposure elicited overexpression of cyclooxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-κB) p65 subunit. Inhibition of COX-2 by NS-398, a selective inhibitor of COX-2, significantly repressed the cytotoxicity, as well as secretion of IL-6 and IL-8 induced by CoCl2. Inhibition of NF-κB by PDTC (a selective inhibitor of NF-κB) or genetic silencing of p65 by RNAi (Si-p65), attenuated not only the cytotoxicity and secretion of IL-6 and IL-8, but also overexpression of COX-2 in CoCl2-treated HaCaT cells. Neutralizing anti-IL-6 or anti-IL-8 antibody statistically alleviated CoCl2-induced cytotoxicity in HaCaT cells. N-acetyl-L-cysteine (NAC), a well characterized ROS scavenger, obviously suppressed CoCl2-induced cytotoxicity in HaCaT cells, as well as secretion of IL-6 and IL-8. Additionally, NAC also repressed overexpression of COX-2 and phosphorylation of NF- B κ p65 subunit induced by CoCl2 in HaCaT cells. In conclusion, our results demonstrated that oxidative stress mediates chemical hypoxia-induced injury and inflammatory response through activation of NF-κB-COX-2 pathway in HaCaT cells.  相似文献   

13.
MDA-MB-231 breast cancer cells have a high invasive potential, yet the mechanisms involved are not known. This study showed that Toll-like receptor 2 (TLR2) was highly expressed in MDA-MB-231 cells and played a critical role in cell invasion. Compared with the poorly invasive MCF-7 cells, MDA-MB-231 cells expressed 10.5-fold more TLR2. Using TLR2 agonist pg-LPS and TLR2 neutralizing antibody, we found that TLR2 activation significantly promoted MDA-MB-231 invasion, whereas TLR2 blockade diminished this capacity. TLR2 activation enhanced the activity of NF-κB and induced phosphorylation of TAK1 and IκBα in the TLR2/NF-κB signaling pathway in MDA-MB-231, but not in MCF-7 cells. TLR2 activation increased IL-6, TGF-β, VEGF and MMP9 secretion, which are associated with TLR2-NF-κB signaling. We demonstrated that TLR2 is a critical receptor responsible for NF-κB signaling activity and highly invasive capacity of MDA-MB-231 cells.  相似文献   

14.
15.
16.
17.
Rugulactone and its analogues were synthesized following Horners–Wadsworth–Emmons and ring-closing metathesis as the key reactions. A library of new rugulactone analogues were designed, synthesized and evaluated for their anticancer activity in breast cancer cells. All analogues have shown anti-proliferative activity, while some of them exhibited significant cytotoxicity. In assays related to cell-cycle distribution, these conjugates induced G1 cell-cycle arrest in MDA-MB-231 cells. The cell cycle arrest nature was further confirmed by examining the effect on Cyclin E and Cdk2 proteins that acts at G1-S phase transition. Immunocytochemistry assay revealed that these compounds inhibited nuclear translocation of NF-κB protein, thereby activation of NF-κB was inhibited. The expression of NF-κB target genes such as Cyclin D1 and Bcl-xL were severely affected. Apart from acting on NF-κB, these compounds also regulate class I Histone deacetylase proteins such as (HDAC-3 and 8) that have a crucial and regulatory role in cell-proliferation. Simultaneously, the apoptotic inducing nature of these compounds was confirmed by activation of PARP protein, a protein that plays a key role in DNA damage and repair pathways. Among all compounds of this series 3g is the most potent compound and can be used for further studies.  相似文献   

18.
The TNF-related apoptosis-inducing ligand was shown to provide a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell proliferation and cytokine production. Although a number of signaling pathways were linked to the TCR/CD3 complex, it is not known how these two receptors cooperate to induce T cell activation. In this study, we show that TRAIL-induced costimulation of T cells depends on activation of the NF-κB pathway. TRAIL induced the NF-κB pathway by phosphorylation of inhibitor of κB factor kinase and protein kinase C in conjunction with anti-CD3. Furthermore, we demonstrated that TRAIL costimulation induced phosphorylation of the upstream TCR-proximal tyrosine kinases, Lck and ZAP70. Ligation of the TRAIL by its soluble receptor, DR4-Fc, alone was able to induce the phosphorylation of Lck and ZAP70 and to activate the NF-κB pathway; however, it was insufficient to fully activate T cells to support T cell proliferation. In contrast, TRAIL engagement in conjunction with anti-CD3, but not TRAIL ligation alone, induced lipid raft assembly and recruitment of Lck and PKC. These results demonstrate that TRAIL costimulation mediates NF-κB activation and T cell proliferation by lipid raft assembly and recruitment of Lck. Our results suggest that in TRAIL costimulation, lipid raft recruitment of Lck integrates mitogenic NF-κB-dependent signals from the TCR and TRAIL in T lymphocytes.  相似文献   

19.
Humanin (HN) and Rattin (HNr), its homologous in the rat, are peptides with cytoprotective action in several cell types such as neurons, lymphocytes and testicular germ cells. Previously, we have shown that HNr is expressed in pituitary cells and that HN inhibited the apoptotic effect of TNF-α in both normal and tumor pituitary cells. The aim of the present study was to identify signaling pathways that mediate the antiapoptotic effect of HN in anterior pituitary cells from ovariectomized rats and in GH3 cells, a somatolactotrope cell line. We assessed the role of STAT3, JNK, Akt and MAPKs as well as proteins of the Bcl-2 family, previously implicated in the antiapoptotic effect of HN. We also evaluated the participation of NF-κB in the antiapoptotic action of HN. STAT3 inhibition reversed the inhibitory effect of HN on TNF-α-induced apoptosis in normal and pituitary tumor cells, indicating that STAT3 signaling pathway mediates the antiapoptotic effect of HN on pituitary cells. Inhibition of NF-κB pathway did not affect action of HN on normal anterior pituitary cells but blocked the cytoprotective effect of HN on TNF-α-induced apoptosis of GH3 cells, suggesting that the NF-κB pathway is involved in HN action in tumor pituitary cells. HN also induced NF-κB-p65 nuclear translocation in these cells. In pituitary tumor cells, JNK and MEK inhibitors also impaired HN cytoprotective action. In addition, HN increased Bcl-2 expression and decreased Bax mitochondrial translocation. Since HN expression in GH3 cells is higher than in normal pituitary cells, we may suggest that through multiple pathways HN could be involved in pituitary tumorigenesis.  相似文献   

20.
Bronchopulmonary dysplasia is a common pulmonary complication of extreme prematurity. Arrested lung development leads to bronchopulmonary dysplasia, but the molecular pathways that cause this arrest are unclear. Lung injury and inflammation increase disease risk, but the cellular site of the inflammatory response and the potential role of localized inflammatory signaling in inhibiting lung morphogenesis are not known. In this study, we show that tissue macrophages present in the fetal mouse lung mediate the inflammatory response to LPS and that macrophage activation inhibits airway morphogenesis. Macrophage depletion or targeted inactivation of the NF-κB signaling pathway protected airway branching in cultured lung explants from the effects of LPS. Macrophages also appear to be the primary cellular site of IL-1β production following LPS exposure. Conversely, targeted NF-κB activation in transgenic macrophages was sufficient to inhibit airway morphogenesis. Macrophage activation in vivo inhibited expression of multiple genes critical for normal lung development, leading to thickened lung interstitium, reduced airway branching, and perinatal death. We propose that fetal lung macrophage activation contributes to bronchopulmonary dysplasia by generating a localized inflammatory response that disrupts developmental signals critical for lung formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号