首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prediction of the lineage dynamics of influenza B viruses for the next season is one of the largest obstacles for constructing an appropriate influenza trivalent vaccine. Seasonal fluctuation of transmissibility and epidemiological interference between the two major influenza B lineages make the lineage dynamics complicated. Here we construct a parsimonious model describing the lineage dynamics while taking into account seasonal fluctuation of transmissibility and epidemiological interference. Using this model we estimated the epidemiological and evolutional parameters with the time-series data of the lineage specific isolates in Japan from the 2010–2011 season to the 2014–2015 season. The basic reproduction number is similar between Victoria and Yamagata, with a minimum value during one year as 0.82 (95% highest posterior density (HPD): 0.77–0.87) for the Yamagata and 0.83 (95% HPD: 0.74–0.92) for Victoria, the amplitude of seasonal variation of the basic reproduction number is 0.77 (95% HPD:0.66–0.87) for Yamagata and 1.05 (95% HPD: 0.89–1.02) for Victoria. The duration for which the acquired immunity is effective against infection by the Yamagata lineage is shorter than the acquired immunity for Victoria, 424.1days (95% HPD:317.4–561.5days). The reduction rate of susceptibility due to immune cross-reaction is 0.51 (95% HPD: 0.084–0.92) for the immunity obtained from the infection with Yamagata against the infection with Victoria and 0.62 (95% HPD: 0.42–0.80) for the immunity obtained from the infection with Victoria against the infection with Yamagata. Using estimated parameters, we predicted the dominant lineage in 2015–2016 season. The accuracy of this prediction is 68.8% if the emergence timings of the two lineages are known and 61.4% if the emergence timings are unknown. Estimated seasonal variation of the lineage specific reproduction number can narrow down the range of emergence timing, with an accuracy of 64.6% if the emergence times are assumed to be the time at which the estimated reproduction number exceeds one.  相似文献   

2.
From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10−5 [3.08*10−5, 3.23*10−5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.  相似文献   

3.
Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host–pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish.  相似文献   

4.

Background

Repeated mass azithromycin distributions are effective in controlling the ocular strains of chlamydia that cause trachoma. However, it is unclear when treatments can be discontinued. Investigators have proposed graduating communities when the prevalence of infection identified in children decreases below a threshold. While this can be tested empirically, results will not be available for years. Here we use a mathematical model to predict results with different graduation strategies in three African countries.

Methods

A stochastic model of trachoma transmission was constructed, using the parameters with the maximum likelihood of obtaining results observed from studies in Tanzania (with 16% infection in children pre-treatment), The Gambia (9%), and Ethiopia (64%). The expected prevalence of infection at 3 years was obtained, given different thresholds for graduation and varying the characteristics of the diagnostic test.

Results

The model projects that three annual treatments at 80% coverage would reduce the mean prevalence of infection to 0.03% in Tanzanian, 2.4% in Gambian, and 12.9% in the Ethiopian communities. If communities graduate when the prevalence of infection falls below 5%, then the mean prevalence at 3 years with the new strategy would be 0.3%, 3.9%, and 14.4%, respectively. Graduations reduced antibiotic usage by 63% in Tanzania, 56% in The Gambia, and 11% in Ethiopia.

Conclusion

Models suggest that graduating communities from a program when the infection is reduced to 5% is a reasonable strategy and could reduce the amount of antibiotic distributed in some areas by more than 2-fold.  相似文献   

5.
The effects of highly active antiretroviral therapy (HAART) on progression of hepatic fibrosis in HIV-hepatitis C virus (HCV) co-infection are not well understood. Deaths from liver diseases have risen in the post-HAART era, yet some cross-sectional studies have suggested that HAART use is associated with improved fibrosis rates. In a retrospective cohort of 533 HIV mono-infected and 127 HIV/HCV co-infected patients, followed between January 1991 and July 2005 at a university-based HIV clinic, we investigated the relationship between cumulative HAART exposure and hepatic fibrosis, as measured by the aspartate aminotransferase-to-platelet ratio index (APRI). We used a novel methodological approach to estimate the dose-response relationship of the effect of HAART exposure on APRI. HAART was associated with increasing APRI over time in HIV/HCV co-infected patients suggesting that they may be experiencing cumulative hepatotoxicity from antiretrovirals. The estimated median change (95% confidence interval) in APRI per one year of HAART intake was of −0.46% (−1.61% to 0.71%) in HIV mono-infected compared to 2.54% (−1.77% to 7.03%) in HIV/HCV co-infected patients. Similar results were found when the direct effect of HAART intake since the last visit was estimated on the change in APRI. HAART use associated is with increased APRI in patients with HIV/HCV co-infection. Therefore treatment for HCV infection may be required to slow the growing epidemic of end-stage liver disease in this population.  相似文献   

6.
OBJECTIVES: To estimate the transmission rate of MRSA in an intensive care unit (ICU) in an 800 bed Australian teaching hospital and predict the impact of infection control interventions. METHODS: A mathematical model was developed which consisted of four compartments: colonised and uncolonised patients and contaminated and uncontaminated health-care workers (HCWs). Patient movements, MRSA acquisition and daily prevalence data were collected from an ICU over 939 days. Hand hygiene compliance and the probability of MRSA transmission from patient to HCW per discordant contact were measured during the study. Attack rate and reproduction ratio were estimated using Bayesian methods. The impact of a number of interventions on attack rate was estimated using both stochastic and deterministic versions of the model. RESULTS: The mean number of secondary cases arising from the ICU admission of colonised patients, also called the ward reproduction ratio, R(w), was estimated to be 0.50 (95% CI 0.39-0.62). The attack rate was one MRSA transmission per 160 (95% CI 130-210) uncolonised-patient days. Results were not sensitive to uncertainty in measured model parameters (hand hygiene rate and transmission probability per contact). Hand hygiene was predicted to be the most effective intervention. Decolonisation was predicted to be relatively ineffective. Increasing HCW numbers was predicted to increase MRSA transmission, in the absence of patient cohorting. The predictions of the stochastic model differed from those of the deterministic model, with lower levels of colonisation predicted by the stochastic model. CONCLUSIONS: The number of secondary cases of MRSA colonisation within the ICU in this study was below unity. Transmission of MRSA was sustained through admission of colonised patients. Stochastic model simulations give more realistic predictions in hospital ward settings than deterministic models. Increasing staff does not necessarily lead to reduced transmission of nosocomial pathogens.  相似文献   

7.

Background

Schistosomiasis remains a significant health burden in many areas of the world. Morbidity control, focused on limiting infection intensity through periodic delivery of anti-schistosomal medicines, is the thrust of current World Health Organization guidelines (2006) for reduction of Schistosoma-related disease. A new appreciation of the lifetime impact of repeated Schistosoma infection has directed attention toward strategies for greater suppression of parasite infection per se, with the goal of transmission interruption. Variations in drug schedules involving increased population coverage and/or treatment frequency are now undergoing field trials. However, their relative effectiveness in long-term infection suppression is presently unknown.

Methodology/Principal Findings

Our study used available field data to calibrate advanced network models of village-level Schistosoma transmission to project outcomes of six different community- or school age-based programs, as compared to the impact of current 2006 W.H.O. recommended control strategies. We then scored the number of years each of 10 typical villages would remain below 10% infection prevalence (a practicable level associated with minimal prevalence of disease). All strategies that included four annual treatments effectively reduced community prevalence to less than 10%, while programs having yearly gaps (‘holidays’) failed to reach this objective in half of the communities. Effective post-program suppression of infection prevalence persisted in half of the 10 villages for 7–10 years, whereas in five high-risk villages, program effects on prevalence lasted zero to four years only.

Conclusions/Significance

At typical levels of treatment adherence (60 to 70%), current WHO recommendations will likely not achieve effective suppression of Schistosoma prevalence unless implemented for ≥6 years. Following more aggressive 4 year annual intervention, some communities may be able to continue without further intervention for 8–10 years, while in higher-risk communities, annual treatment may prove necessary until eco-social factors fostering transmission are removed. Effective ongoing surveillance and locally targeted annual intervention must then become their mainstays of control.  相似文献   

8.

Background

Artemisinin derivatives used in recently introduced combination therapies (ACTs) for Plasmodium falciparum malaria significantly lower patient infectiousness and have the potential to reduce population-level transmission of the parasite. With the increased interest in malaria elimination, understanding the impact on transmission of ACT and other antimalarial drugs with different pharmacodynamics becomes a key issue. This study estimates the reduction in transmission that may be achieved by introducing different types of treatment for symptomatic P. falciparum malaria in endemic areas.

Methods and Findings

We developed a mathematical model to predict the potential impact on transmission outcomes of introducing ACT as first-line treatment for uncomplicated malaria in six areas of varying transmission intensity in Tanzania. We also estimated the impact that could be achieved by antimalarials with different efficacy, prophylactic time, and gametocytocidal effects. Rates of treatment, asymptomatic infection, and symptomatic infection in the six study areas were estimated using the model together with data from a cross-sectional survey of 5,667 individuals conducted prior to policy change from sulfadoxine-pyrimethamine to ACT. The effects of ACT and other drug types on gametocytaemia and infectiousness to mosquitoes were independently estimated from clinical trial data. Predicted percentage reductions in prevalence of infection and incidence of clinical episodes achieved by ACT were highest in the areas with low initial transmission. A 53% reduction in prevalence of infection was seen if 100% of current treatment was switched to ACT in the area where baseline slide-prevalence of parasitaemia was lowest (3.7%), compared to an 11% reduction in the highest-transmission setting (baseline slide prevalence = 57.1%). Estimated percentage reductions in incidence of clinical episodes were similar. The absolute size of the public health impact, however, was greater in the highest-transmission area, with 54 clinical episodes per 100 persons per year averted compared to five per 100 persons per year in the lowest-transmission area. High coverage was important. Reducing presumptive treatment through improved diagnosis substantially reduced the number of treatment courses required per clinical episode averted in the lower-transmission settings although there was some loss of overall impact on transmission. An efficacious antimalarial regimen with no specific gametocytocidal properties but a long prophylactic time was estimated to be more effective at reducing transmission than a short-acting ACT in the highest-transmission setting.

Conclusions

Our results suggest that ACTs have the potential for transmission reductions approaching those achieved by insecticide-treated nets in lower-transmission settings. ACT partner drugs and nonartemisinin regimens with longer prophylactic times could result in a larger impact in higher-transmission settings, although their long term benefit must be evaluated in relation to the risk of development of parasite resistance.  相似文献   

9.

Background

The elimination of blinding trachoma focuses on controlling Chlamydia trachomatis infection through mass antibiotic treatment and measures to limit transmission. As the prevalence of disease declines, uncertainty increases over the most effective strategy for treatment. There are little long-term data on the effect of treatment on infection, especially in low prevalence settings, on which to base guidelines.

Methodology/Principal Findings

The population of a cluster of 14 Gambian villages with endemic trachoma was examined on seven occasions over five years (baseline, 2, 6, 12, 17, 30 and 60 months). Mass antibiotic treatment was given at baseline only. All families had accessible clean water all year round. New latrines were installed in each household after 17 months. Conjunctival swab samples were collected and tested for C. trachomatis by PCR. Before treatment the village-level prevalence of follicular trachoma in 1 to 9 year olds (TF%1–9) was 15.4% and C. trachomatis was 9.7%. Antibiotic treatment coverage was 83% of the population. In 12 villages all baseline infection cleared and few sporadic cases were detected during the following five years. In the other two villages treatment was followed by increased infection at two months, which was associated with extensive contact with other untreated communities. The prevalence of infection subsequently dropped to 0% in these 2 villages and 0.6% for the whole population by the end of the study in the absence of any further antibiotic treatment. However, several villages had a TF%1–9 of >10%, the threshold for initiating or continuing mass antibiotic treatment, in the absence of any detectable C. trachomatis.

Conclusions/Significance

A single round of mass antibiotic treatment may be sufficient in low prevalence settings to control C. trachomatis infection when combined with environmental conditions, which suppress transmission, such as a good water supply and sanitation.  相似文献   

10.
11.
The number of cattle herds placed under movement restrictions in Great Britain (GB) due to the suspected presence of bovine tuberculosis (bTB) has progressively increased over the past 25 years despite an intensive and costly test-and-slaughter control program. Around 38% of herds that clear movement restrictions experience a recurrent incident (breakdown) within 24 months, suggesting that infection may be persisting within herds. Reactivity to tuberculin, the basis of diagnostic testing, is dependent on the time from infection. Thus, testing efficiency varies between outbreaks, depending on weight of transmission and cannot be directly estimated. In this paper, we use Approximate Bayesian Computation (ABC) to parameterize two within-herd transmission models within a rigorous inferential framework. Previous within-herd models of bTB have relied on ad-hoc methods of parameterization and used a single model structure (SORI) where animals are assumed to become detectable by testing before they become infectious. We study such a conventional within-herd model of bTB and an alternative model, motivated by recent animal challenge studies, where there is no period of epidemiological latency before animals become infectious (SOR). Under both models we estimate that cattle-to-cattle transmission rates are non-linearly density dependent. The basic reproductive ratio for our conventional within-herd model, estimated for scenarios with no statutory controls, increases from 1.5 (0.26–4.9; 95% CI) in a herd of 30 cattle up to 4.9 (0.99–14.0) in a herd of 400. Under this model we estimate that 50% (33–67) of recurrent breakdowns in Britain can be attributed to infection missed by tuberculin testing. However this figure falls to 24% (11–42) of recurrent breakdowns under our alternative model. Under both models the estimated extrinsic force of infection increases with the burden of missed infection. Hence, improved herd-level testing is unlikely to reduce recurrence unless this extrinsic infectious pressure is simultaneously addressed.  相似文献   

12.
Bordetella pertussis infection remains an important public health problem worldwide despite decades of routine vaccination. A key indicator of the impact of vaccination programmes is the inter-epidemic period, which is expected to increase with vaccine uptake if there is significant herd immunity. Based on empirical data from 64 countries across the five continents over the past 30–70 years, we document the observed relationship between the average inter-epidemic period, birth rate and vaccine coverage. We then use a mathematical model to explore the range of scenarios for duration of immunity and transmission resulting from repeat infections that are consistent with empirical evidence. Estimates of pertussis periodicity ranged between 2 and 4.6 years, with a strong association with susceptible recruitment rate, defined as birth rate × (1 − vaccine coverage). Periodicity increased by 1.27 years on average after the introduction of national vaccination programmes (95% CI: 1.13, 1.41 years), indicative of increased herd immunity. Mathematical models suggest that the observed patterns of pertussis periodicity are equally consistent with loss of immunity that is not as rapid as currently thought, or with negligible transmission generated by repeat infections. We conclude that both vaccine coverage and birth rate drive pertussis periodicity globally and that vaccination induces strong herd immunity effects. A better understanding of the role of repeat infections in pertussis transmission is critical to refine existing control strategies.  相似文献   

13.

Background

The basic reproduction number, , is one of the many measures of the epidemic potential of an infection in a population. We estimate HIV over 18 years in a rural population in Uganda, examine method-specific differences in estimated , and estimate behavioural changes that would reduce below one.

Methods

Data on HIV natural history and infectiousness were collated from literature. Data on new sexual partner count were available from a rural clinical cohort in Uganda over 1991–2008. was estimated using six methods. Behavioural changes required to reduce below one were calculated.

Results

Reported number of new partners per year was 0 to 16 (women) and 0 to 80 (men). When proportionate sexual mixing was assumed, the different methods yielded comparable estimates. Assuming totally assortative mixing led to increased estimates in the high sexual activity class while all estimates in the low-activity class were below one. Using the “effective” partner change rate introduced by Anderson and colleagues resulted in estimates all above one except in the lowest sexual activity class. could be reduced below one if: (a) medium risk individuals reduce their partner acquisition rate by 70% and higher risk individuals reduce their partner acquisition rate by 93%, or (b) higher risk individuals reduce the partner acquisition rate by 95%.

Conclusions

The estimated depended strongly on the method used. Ignoring variation in sexual activity leads to an underestimation of . Relying on behaviour change alone to eradicate HIV may require unrealistically large reductions in risk behaviour, even though for a small proportion of the population. To control HIV, complementary prevention strategies such as male circumcision and HIV treatment services need rapid scale up.  相似文献   

14.

Background

Antibiotics are overused in children and adolescents with lower respiratory tract infection (LRTI). Serum-procalcitonin (PCT) can be used to guide treatment when bacterial infection is suspected. Its role in pediatric LRTI is unclear.

Methods

Between 01/2009 and 02/2010 we randomized previously healthy patients 1 month to 18 years old presenting with LRTI to the emergency departments of two pediatric hospitals in Switzerland to receive antibiotics either according to a PCT guidance algorithm established for adult LRTI or standard care clinical guidelines. In intention-to-treat analyses, antibiotic prescribing rate, duration of antibiotic treatment, and number of days with impairment of daily activities within 14 days of randomization were compared between the two groups.

Results

In total 337 children, mean age 3.8 years (range 0.1–18), were included. Antibiotic prescribing rates were not significantly different in PCT guided patients compared to controls (OR 1.26; 95% CI 0.81, 1.95). Mean duration of antibiotic exposure was reduced from 6.3 to 4.5 days under PCT guidance (−1.8 days; 95% CI −3.1, −0.5; P = 0.039) for all LRTI and from 9.1 to 5.7 days for pneumonia (−3.4 days 95% CI −4.9, −1.7; P<0.001). There was no apparent difference in impairment of daily activities between PCT guided and control patients.

Conclusion

PCT guidance reduced antibiotic exposure by reducing the duration of antibiotic treatment, while not affecting the antibiotic prescribing rate. The latter may be explained by the low baseline prescribing rate in Switzerland for pediatric LRTI and the choice of an inappropriately low PCT cut-off level for this population.

Trial Registration

Controlled-Trials.com ISRCTN17057980 ISRCTN17057980  相似文献   

15.
Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. SOCS1−/− mice die within three weeks postnatally due to IFN-γ-induced hyperinflammation. Since it is well established that IFN-γ is dispensable for protection against influenza infection, we generated SOCS1−/−IFN-γ−/− mice to determine whether SOCS1 regulates antiviral immunity in vivo. Here we show that SOCS1−/−IFN-γ−/− mice exhibited significantly enhanced resistance to influenza infection, as evidenced by improved viral clearance, attenuated acute lung damage, and consequently increased survival rates compared to either IFN-γ−/− or WT animals. Enhanced viral clearance in SOCS1−/−IFN-γ−/− mice coincided with a rapid onset of adaptive immune responses during acute infection, while their reduced lung injury was associated with decreased inflammatory cell infiltration at the resolution phase of infection. We further determined the contribution of SOCS1-deficient T cells to antiviral immunity. Anti-CD4 antibody treatment of SOCS1−/−IFN-γ−/− mice had no significant effect on their enhanced resistance to influenza infection, while CD8+ splenocytes from SOCS1−/−IFN-γ−/− mice were sufficient to rescue RAG1−/− animals from an otherwise lethal infection. Surprisingly, despite their markedly reduced viral burdens, RAG1−/− mice reconstituted with SOCS1−/−IFN-γ−/− adaptive immune cells failed to ameliorate influenza-induced lung injury. In conclusion, in the absence of IFN-γ, the cytoplasmic protein SOCS1 not only inhibits adaptive antiviral immune responses but also exacerbates inflammatory lung damage. Importantly, these detrimental effects of SOCS1 are conveyed through discrete cell populations. Specifically, while SOCS1 expression in adaptive immune cells is sufficient to inhibit antiviral immunity, SOCS1 in innate/stromal cells is responsible for aggravated lung injury.  相似文献   

16.
The transmission potential of a novel infection depends on both the inherent transmissibility of a pathogen, and the level of susceptibility in the host population. However, distinguishing between these pathogen- and population-specific properties typically requires detailed serological studies, which are rarely available in the early stages of an outbreak. Using a simple transmission model that incorporates age-stratified social mixing patterns, we present a novel method for characterizing the transmission potential of subcritical infections, which have effective reproduction number R<1, from readily available data on the size of outbreaks. We show that the model can identify the extent to which outbreaks are driven by inherent pathogen transmissibility and pre-existing population immunity, and can generate unbiased estimates of the effective reproduction number. Applying the method to real-life infections, we obtained accurate estimates for the degree of age-specific immunity against monkeypox, influenza A(H5N1) and A(H7N9), and refined existing estimates of the reproduction number. Our results also suggest minimal pre-existing immunity to MERS-CoV in humans. The approach we describe can therefore provide crucial information about novel infections before serological surveys and other detailed analyses are available. The methods would also be applicable to data stratified by factors such as profession or location, which would make it possible to measure the transmission potential of emerging infections in a wide range of settings.  相似文献   

17.
IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28−/− mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28−/loxCre+/−+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28−/− mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28−/loxCre+/− mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28−/− mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5+ TFH cell population. Furthermore, total number of CD4+ T cells and B220+ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28−/− mice and tamoxifen treated CD28−/loxCre+/− mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4+ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28−/loxCre+/− mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection.  相似文献   

18.
Cystic fibrosis (CF) is a common and deadly inherited disease, caused by mutations in the CFTR gene that encodes a cAMP-activated chloride channel. One outstanding manifestation of the disease is the persistent bacterial infection and inflammation in the lung, which claims over 90% of CF mortality. It has been debated whether neutrophil-mediated phagocytic innate immunity has any intrinsic defect that contributes to the host lung defense failure. Here we compared phagosomal CFTR targeting, hypochlorous acid (HOCl) production, and microbial killing of the neutrophils from myeloid Cftr-inactivated (Myeloid-Cftr−/−) mice and the non-inactivated control (Cftrfl10) mice. We found that the mutant CFTR that lacked Exon-10 failed to target to the neutrophil phagosomes. This dysfunction resulted in impaired intraphagosomal HOCl production and neutrophil microbial killing. In vivo lung infection with a lethal dose of Pseudomonas aeruginosa caused significantly higher mortality in the myeloid CF mice than in the controls. The myeloid-Cftr−/− lungs were deficient in bacterial clearance, and had sustained neutrophilic inflammation and stalled transition from early to late immunity. These manifestations recapitulated the symptoms of human CF lungs. The data altogether suggest that myeloid CFTR expression is critical to normal host lung defense. CFTR dysfunction in neutrophils compromises the phagocytic innate immunity, which may predispose CF lungs to infection.  相似文献   

19.
Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8×10−4 (95%CI: [2.6 ; 11.0]×10−4). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900–4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models'' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another.  相似文献   

20.

Background

Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions.

Methodology/Principal Findings

The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1–4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for.

Conclusions/Significance

Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号