共查询到20条相似文献,搜索用时 0 毫秒
1.
JINLIANG WANG 《Molecular ecology》2009,18(10):2148-2164
Equations for the effective size ( Ne ) of a population were derived in terms of the frequencies of a pair of offspring taken at random from the population being sibs sharing the same one or two parents. Based on these equations, a novel method (called sibship assignment method) was proposed to infer Ne from the sibship frequencies estimated from a sibship assignment analysis, using the multilocus genotypes of a sample of offspring taken at random from a single cohort in a population. Comparative analyses of extensive simulated data and some empirical data clearly demonstrated that the sibship assignment method is much more accurate [measured by the root mean squared error, RMSE, of 1/(2 Ne )] than other methods such as the heterozygote excess method, the linkage disequilibrium method, and the temporal method. The RMSE of 1/(2 Ne ) from the sibship assignment method is typically a small fraction of that from other methods. The new method is also more general and flexible than other methods. It can be applied to populations with nonoverlapping generations of both diploid and haplodiploid species under random or nonrandom mating, using either codominant or dominant markers. It can also be applied to the estimation of Ne for a subpopulation with immigration. With some modification, it could be applied to monoecious diploid populations with self-fertilization, and to populations with overlapping generations. 相似文献
2.
Jinliang Wang 《Molecular ecology resources》2013,13(4):734-739
A simulation module is built into the software package colony to simulate marker genotype data of individuals with a predefined parentage and sibship structure. The simulated data can then be used to compare the accuracy, robustness and computational efficiency of different methods for sibship and parentage reconstruction, to examine the impact of different parameter options in a software on its accuracy and computational efficiency and to assess the information sufficiency of a given set of markers for a sibship and parentage analysis. This computer note describes the method used for simulating genotype data with a pedigree and its possible applications. The method can quickly generate genotype data for a one‐ or two‐generation pedigree of virtually any complexity with up to 30k offspring, at up to 30k codominant or dominant loci with an arbitrary degree of linkage and a user‐defined mistyping rate. The data can be fed directly into the colony program for analysis by three sibship and parentage reconstruction methods and can also be imported into other programs such as Excel and R. With slight modification, the data can be analysed by other relationship analysis software. 相似文献
3.
Jinliang Wang 《Molecular ecology》2014,23(13):3191-3213
Coupled with rapid developments of efficient genetic markers, powerful population genetic methods were proposed to estimate migration rates (m) in natural populations in much broader spatial and temporal scales than the traditional mark‐release‐recapture (MRR) methods. Highly polymorphic (e.g. microsatellites) and genomic‐wide (e.g. SNPs) markers provide sufficient information to assign individuals to their populations or parents of origin and thereby to estimate directly m in a way similar to MRR. Such direct estimates of current migration rates are particularly useful in understanding the ecology and microevolution of wild populations and in managing the populations in the future. In this study, I proposed and implemented, in the software MigEst, a likelihood method to use marker‐based parentage assignments in jointly estimating m and candidate parent sampling proportions (x) in a subset of populations, investigated its power and accuracy using data simulated in various scenarios of population properties (e.g. the actual m, number, size and differentiation of populations) and sampling properties (e.g. the numbers of sampled parent candidates, offspring and markers), compared it with the population assignment approach implemented in the software BayesAss and demonstrated its usefulness by analysing a microsatellite data set from three natural populations of Brazilian bats. Simulations showed that MigEst provides unbiased and accurate estimates of m and performs better than BayesAss except when populations are highly differentiated with very small and ecologically insignificant migration rates. A valuable property of MigEst is that in the presence of unsampled populations, it gives good estimates of the rate of migration among sampled populations as well as of the rate of migration into each sampled population from the pooled unsampled populations. 相似文献
4.
Many plants and some animal species are polyploids. Nondisomically inherited markers (e.g. microsatellites) in such species cannot be analysed directly by standard population genetics methods developed for diploid species. One solution is to transform the polyploid codominant genotypes to pseudodiploid‐dominant genotypes, which can then be analysed by standard methods for various purposes such as spatial genetic structure, individual relatedness and relationship. Although this data transformation approach has been used repeatedly in the literature, no systematic study has been conducted to investigate how efficient it is, how much marker information is lost and thus how much analysis accuracy is reduced. More specifically, it is unknown whether or not the transformed data can be used to infer parentage and sibship jointly, and how different sampling schemes (number and polymorphism of markers, number of individuals) and ploidy level affect the inference accuracy. This study analyses both simulated and empirical data to examine the effects of polyploid levels, actual pedigree structures and marker number and polymorphism on the accuracy of joint parentage and sibship assignments in polyploid species. We show that sibship, parentage and selfing rates in polyploids can be inferred accurately from a typical set of microsatellite loci. We also show that inferences can be substantially improved by allowing for a small genotyping error rate to accommodate the distortion in assumed Mendelian inheritance of the converted markers when large sibship groups are involved. The results are discussed in the context of polyploid data analysis in molecular ecology. 相似文献
5.
Molecular techniques are making ever more genetic markers available for use in parentage assignment, and measures of relatedness. We present a program, Kinship, designed to use likelihood techniques to test for any non-inbred pedigree relationship between pairs of individuals, using single-locus codominant genetic markers. Kinship calculates the likelihood that each pair of individuals in a data set are related by a given pedigree hypothesis, and likelihood ratios for any pair of hypotheses. The program also uses a simulation routine to attach statistical significance to its results. 相似文献
6.
Three new blood group systems, called “T,” “U,” and “V,” have been identified in the rhesus monkey (Macaca mulatta). Each system consists of a single antigenic factor (blood group) detected by a monospecific alloimmune reagent that agglutinates erythrocytes. The antisera that detect these blood groups were obtained following a series of alloimmunizations and absorption fractionizations of the resulting antisera to produce operationally monospecific typing reagents. Analyses of family data indicated that each blood group was controlled by an autosomal dominant gene and that each system was independent of previously defined systems. With the addition of these new blood groups, we can identify 16 different blood group systems and well over one hundred million possible phenotypes in this species. 相似文献
7.
COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients 总被引:2,自引:0,他引:2
Wang J 《Molecular ecology resources》2011,11(1):141-145
The software package COANCESTRY implements seven relatedness estimators and three inbreeding estimators to estimate relatedness and inbreeding coefficients from multilocus genotype data. Two likelihood estimators that allow for inbred individuals and account for genotyping errors are for the first time included in this user-friendly program for PCs running Windows operating system. A simulation module is built in the program to simulate multilocus genotype data of individuals with a predefined relationship, and to compare the estimators and the simulated relatedness values to facilitate the selection of the best estimator in a particular situation. Bootstrapping and permutations are used to obtain the 95% confidence intervals of each relatedness or inbreeding estimate, and to test the difference in averages between groups. 相似文献
8.
In Greece, seven native horse breeds have been identified so far. Among these, the Skyros pony is outstanding through having a distinct phenotype. In the present study, the aim was to assess genetic diversity in this breed, by using different types of genetic loci and available genealogical information. Its relationships with the other Greek, as well as foreign, domestic breeds were also investigated. Through microsatellite and pedigree analysis it appeared that the Skyros presented a similar level of genetic diversity to the other European breeds. Nevertheless, comparisons between DNA-based and pedigree-based results revealed that a loss of genetic diversity had probably already occurred before the beginning of breed registration. Tests indicated the possible existence of a recent bottleneck in two of the three main herds of Skyros pony. Nonetheless, relatively high levels of heterozygosity and Polymorphism Information Content indicated sufficient residual genetic variability, probably useful in planning future strategies for breed conservation. Three other Greek breeds were also analyzed. A comparison of these with domestic breeds elsewhere, revealed the closest relationships to be with the Middle Eastern types, whereas the Skyros itself remained isolated, without any close relationship, whatsoever. 相似文献
9.
JINLIANG WANG 《Molecular ecology》2010,19(9):1898-1913
Genetic marker‐based parentage analyses are widely applied to studies of natural populations in the fields of evolutionary biology, conservation biology and ecology. When the same markers used in a parentage analysis are used together with the inferred parentage in a downstream analysis, such as the analysis of mate choice in terms of heterozygosity or relatedness, a bias may be incurred because a subset of the genotypes are favoured in parentage assignments or non‐exclusions. A previous simulation study shows that exclusion‐based paternity analyses are biased in favour of heterozygous males, and males less related to the mothers than expected under random mating. In this study, I investigated the biases of genetic paternity analyses achieved by both exclusion‐ and likelihood‐based methods, using both analytical and simulation approaches. It is concluded that while both exclusion‐ and likelihood‐based methods can lead to biased paternity assignments or non‐exclusions in favour of a subset of genotypes, the bias is not consistently towards heterozygous males or males apparently less related to mothers. Both the direction and extent of the bias depend heavily on the allele frequency distribution and the number of markers, the methods used for paternity assignments, and the estimators of relatedness. There exist important differences in the patterns of the biases between exclusion‐ and likelihood‐based paternity analysis methods. It is concluded that the markers, except when they are highly informative to yield accurate paternity assignments or exclusions, should be split into two subsets which are used separately in the paternity and downstream analyses. 相似文献
10.
Carolino I Sousa CO Ferreira S Carolino N Silva FS Gama LT 《Genetics and molecular biology》2009,32(2):306-311
A study was conducted to assess the feasibility of applying a panel of 10 microsatellite markers in parentage control of beef cattle in Portugal. In the first stage, DNA samples were collected from 475 randomly selected animals of the Charolais, Limousin and Preta breeds. Across breeds and genetic markers, means for average number of alleles, effective number of alleles, expected heterozygosity and polymorphic information content, were 8.20, 4.43, 0.733 and 0.70, respectively. Enlightenment from the various markers differed among breeds, but the set of 10 markers resulted in a combined probability above 0.9995 in the ability to exclude a random putative parent. The marker-set thus developed was later used for parentage control in a group of 140 calves from several breeds, where there was the suspicion of possible faulty parentage recording. Overall, 76.4% of the calves in this group were compatible with the recorded parents, with most incompatibilities due to misidentification of the dam. Efforts must be made to improve the quality of pedigree information, with particular emphasis on information recorded at the calf's birth. 相似文献
11.
DeNise S Johnston E Halverson J Marshall K Rosenfeld D McKenna S Sharp T Edwards J 《Animal genetics》2004,35(1):14-17
DNA analysis of microsatellite markers has become a common tool for verifying parentage in breed registries and identifying individual animals that are linked to a database or owner. Panels of markers have been developed in canines, but their utility across and within a wide range of breeds has not been reported. The American Kennel Club (AKC) authorized a study to determine the power to exclude non-parents and identify individuals using DNA genotypes of 17 microsatellite markers in two panels. Cheek swab samples were voluntarily collected at Parent Breed Club National Specialty dog shows and 9561 samples representing 108 breeds were collected, averaging 88.5 dogs per breed. The primary panel of 10 markers exceeded 99% power of exclusion for canine parentage verification of 61% of the breeds. In combination with the secondary panel of seven markers, 100% of the tested breeds exceeded 99% power of exclusion. The minimum probability match rate of the first panel was 3.6 x 10(-5) averaged across breeds, and with the addition of the second panel, the probability match rate was 3.2 x 10(-8); thus the probability of another random, unrelated dog with the same genotype is very low. The results of this analysis indicated that, on average, the primary panel meets the AKC's needs for routine parentage testing, but that a combination of 10-15 genetic markers from the two panels could yield a universal canine panel with enhanced processing efficiency, reliability and informativeness. 相似文献
12.
Estimates of quantitative trait loci (QTL) effects derived from complete genome scans are biased, if no assumptions are made about the distribution of QTL effects. Bias should be reduced if estimates are derived by maximum likelihood, with the QTL effects sampled from a known distribution. The parameters of the distributions of QTL effects for nine economic traits in dairy cattle were estimated from a daughter design analysis of the Israeli Holstein population including 490 marker-by-sire contrasts. A separate gamma distribution was derived for each trait. Estimates for both the α and β parameters and their SE decreased as a function of heritability. The maximum likelihood estimates derived for the individual QTL effects using the gamma distributions for each trait were regressed relative to the least squares estimates, but the regression factor decreased as a function of the least squares estimate. On simulated data, the mean of least squares estimates for effects with nominal 1% significance was more than twice the simulated values, while the mean of the maximum likelihood estimates was slightly lower than the mean of the simulated values. The coefficient of determination for the maximum likelihood estimates was five-fold the corresponding value for the least squares estimates. 相似文献
13.
一种基于高密度遗传标记的亲子鉴定方法及其应用 总被引:2,自引:0,他引:2
系谱是人类遗传及动植物育种研究与实践的重要信息来源之一。系谱记录错误是育种生产中普遍存在的一种记录错误,影响基因定位、遗传值及表型值预测等相关研究结果的可靠性。现有的方法软件可以利用遗传标记信息对疑似亲子进行亲子鉴定,但这些软件方法操作复杂,限制标记数量,如Cervus。针对当前高密度SNP标记在人类及动植物研究中广泛应用的现状,文章提出了一种基于全基因组高密度SNP数据的亲子鉴定新方法,命名为EasyPC。对EasyPC及Cervus的运行效率进行了对比,并用中国荷斯坦牛(n=2180)和杜洛克猪(n=191)的全基因组SNP芯片数据对EasyPC进行了验证。结果表明:EasyPC运行效率高于Cervus,牛和猪群体系谱错误率分别为20%和6%,与相关研究报道相符。通过使用全基因组SNP标记对群体孟德尔错误率的经验分布进行分析,该方法不仅可以简单、快速、准确地判别系谱的正确性,而且还可以对错误系谱进行校正。EasyPC为解决全基因组研究中基因型及系谱数据前处理过程中的系谱校正问题提供了一种新的途径。 相似文献
14.
Highly variable microsatellite loci were employed to study the mating system of the sexually dimorphic Gulf pipefish Syngnathus scovelli . In this species, like others in the family Syngnathidae, 'pregnant' males provide all parental care. Gulf pipefish were collected from one locale in the northern Gulf of Mexico, and internally carried broods of 40 pregnant males were analysed genetically. By comparing multilocus microsatellite fingerprints for the inferred mothers against expected genotypic distributions from the population sample, it was determined that: (i) only one male had received eggs from more than a single female; and (ii) on two separate occasions, two different males had received eggs from the same female. Given the high power to detect multiple matings by males, the first finding indicates that only rarely are individual males impregnated by multiple females during the course of a pregnancy. Conversely, given the lower power to detect multiple matings by females due to sampling constraints, the second finding suggests a high frequency of multiple successful matings by females. Thus, this population of Gulf pipefish displays a polyandrous genetic mating system. The relevance of these genetic findings is discussed with regard to the evolution of secondary sex traits in this species, and in other syngnathids. 相似文献
15.
Formulae were developed to compute exclusion probabilities for parentage confirmation for any number of diallelic markers under the assumption that the minor allele frequency (MAF) varied among markers, but has a uniform distribution. Three scenarios were analysed: a progeny with (1) a single putative parent; (2) two putative parents; and (3) one actual parent and one putative parent. Exclusion probabilities were computed for minimum values for the MAFs of 0.1, 0.2 and 0.3, and required either one or at least two conflicts for exclusion. The numbers of markers required to obtain 99% exclusion probabilities based on a single conflict for the three minimum MAFs were 54, 45 and 39 for scenario 1; 17, 16 and 15 for scenario 2; and 28, 25 and 24 for scenario 3. The requirement of at least two conflicts for exclusion increased the number of markers required by approximately 45% for all three scenarios and all three minimum MAFs. The results obtained by the analytical formulae were very close to results obtained by simulation and to values in the literature for specific marker sets. 相似文献
16.
Although a major component of fitness, male reproductive success is generally extremely difficult to estimate. As a result, genetic methods and maximum likelihood models have been developed to estimate male parentage, but all are limited in practice by the degree of genetic variation observable. Scoring individuals phenotypically at a large number of random loci exhibiting dominance (e.g. RAPD markers) may provide a means of detecting sufficient genetic variation. Dominance, however, represents a loss of information and therefore greater variation in the estimate of paternity. A mixture model describing mating in a population is presented to quantify the trade-off between marker types when estimates of male fertility are sought. A sample size 1.5-2.0 times greater is required for dominant markers under some conditions to obtain the same confidence in fertility estimates as for codominant markers, although with large sample sizes the fertility estimates are similar for either marker type. Since the number of dominant DN A markers is not limited in the same manner as is the number of codominant protein markers, one's confidence in the estimates can be increased above that possible from proteins by surveying additional loci. However, for a fixed sample size a trade-off exists between the number of progeny assayed per female and the number of loci surveyed. In many cases more progeny per female provide better estimates of fertility than more loci. 相似文献
17.
Anders Christian S?rensen Ricardo Pong-Wong Jack J Windig John A Woolliams 《遗传、选种与进化》2002,34(5):557-579
A rapid, deterministic method (DET) based on a recursive algorithm and a stochastic method based on Markov Chain Monte Carlo (MCMC) for calculating identity-by-descent (IBD) matrices conditional on multiple markers were compared using stochastic simulation. Precision was measured by the mean squared error (MSE) of the relationship coefficients in predicting the true IBD relationships, relative to MSE obtained from using pedigree only. Comparisons were made when varying marker density, allele numbers, allele frequencies, and the size of full-sib families. The precision of DET was 75–99% relative to MCMC, but was not simply related to the informativeness of individual loci. For situations mimicking microsatellite markers or dense SNP, the precision of DET was ≥ 95% relative to MCMC. Relative precision declined for the SNP, but not microsatellites as marker density decreased. Full-sib family size did not affect the precision. The methods were tested in interval mapping and marker assisted selection, and the performance was very largely determined by the MSE. A multi-locus information index considering the type, number, and position of markers was developed to assess precision. It showed a marked empirical relationship with the observed precision for DET and MCMC and explained the complex relationship between relative precision and the informativeness of individual loci. 相似文献
18.
Many breeding systems include 'multiple mating' in which males or females mate with multiple partners. We identify two forms of multiple mating: 'single-sex', where the next-generation individuals (NGIs) are the product of multiple mating by one sex; and 'two-sex', where the NGIs are the product of multiple mating by both sexes. For both mating systems we develop models that estimate the proportion of NGIs that is fathered (paternity) or mothered (maternity) by the putative parents. The models only require genetic data from the parent or parents in question and the sample of NGIs, as well as an estimate of population allele frequencies. The models provide unbiased estimates, can accommodate loci with many alleles and are robust to violations of their assumptions. They allow researchers to address intractable problems such as the parentage of seeds found on the ground, juvenile fish in a stream, and nestlings in a communal breeding bird. We demonstrate the models using genetic data from a nest of the bluegill sunfish Lepomis macrochirus, where the NGIs may be from multiple females that have spawned with multiple males from different life histories (cuckolder and parental). 相似文献
19.
Anna K Sonesson 《遗传、选种与进化》2005,37(7):587-599
The aim of this paper was to study the performance of a novel fish breeding scheme, which is a combination of walk-back and optimum contribution selection using stochastic simulation. In this walk-back selection scheme, batches of different sizes (50, 100, 1000, 5000 and 10 000) with the phenotypically superior fish from one tank with mixed families were genotyped to set up the pedigree. BLUP estimated breeding values were calculated. The optimum contribution selection method was used with the rate of inbreeding (ΔF) constrained to 0.005 or 0.01 per generation. If the constraint on ΔF could not be held, a second batch of fish was genotyped etc. Compared with the genotyping of all selection candidates (1000, 5000 or 10 000), the use of batches saves genotyping costs. The results show that two batches of 50 fish were often necessary. With a batch size of 100, genetic level was 76–92% of the genetic level achieved for schemes with all fish being genotyped and thus candidates for the optimum contribution selection step. More parents were selected for schemes with larger batches, resulting in a higher genetic gain, especially when all selection candidates were genotyped. There was little extra genetic gain in genotyping of 1000 fish instead of 100 for the larger schemes of 5000 and 10 000 candidates. The accuracy of breeding values was similar for all batch sizes (~0.30), but higher (~0.5) when all candidates were included. Since only the phenotypically most superior fish were genotyped, BLUP-EBV were biased. Compared with genotyping of all selection candidates, the use of batches saves genotyping costs, while simultaneously maintaining high genetic gains. 相似文献
20.
We develop fractional allocation models and confidence statistics for parentage analysis in mating systems. The models can be used, for example, to estimate the paternities of candidate males when the genetic mother is known or to calculate the parentage of candidate parent pairs when neither is known. The models do not require two implicit assumptions made by previous models, assumptions that are potentially erroneous. First, we provide formulas to calculate the expected parentage, as opposed to using a maximum likelihood algorithm to calculate the most likely parentage. The expected parentage is superior as it does not assume a symmetrical probability distribution of parentage and therefore, unlike the most likely parentage, will be unbiased. Second, we provide a mathematical framework for incorporating additional biological data to estimate the prior probability distribution of parentage. This additional biological data might include behavioral observations during mating or morphological measurements known to correlate with parentage. The value of multiple sources of information is increased accuracy of the estimates. We show that when the prior probability of parentage is known, and the expected parentage is calculated, fractional allocation provides unbiased estimates of the variance in reproductive success, thereby correcting a problem that has previously plagued parentage analyses. We also develop formulas to calculate the confidence interval in the parentage estimates, thus enabling the assessment of precision. These confidence statistics have not previously been available for fractional models. We demonstrate our models with several biological examples based on data from two fish species that we study, coho salmon (Oncorhychus kisutch) and bluegill sunfish (Lepomis macrochirus). In coho, multiple males compete to fertilize a single female's eggs. We show how behavioral observations taken during spawning can be combined with genetic data to provide an accurate calculation of each male's paternity. In bluegill, multiple males and multiple females may mate in a single nest. For a nest, we calculate the fertilization success and the 95% confidence interval of each candidate parent pair. 相似文献