首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Olig2 is indispensable for motoneuron and oligodendrocyte fate-specification in the pMN domain of embryonic spinal cords, and also involved in the proliferation and differentiation of several cell types in the nervous system, including neural progenitor cells (NPCs) and oligodendrocytes. However, how Olig2 controls these diverse biological processes remains unclear. Here, we demonstrated that a novel Olig2-binding protein, DEAD-box helicase 20 (Ddx20), is indispensable for the survival of NPCs and oligodendrocyte progenitor cells (OPCs). A central nervous system (CNS)-specific Ddx20 conditional knockout (cKO) demonstrated apoptosis and cell cycle arrest in NPCs and OPCs, through the potentiation of the p53 pathway in DNA damage-dependent and independent manners, including SMN complex disruption and the abnormal splicing of Mdm2 mRNA. Analyzes of Olig2 null NPCs showed that Olig2 contributed to NPC proliferation through Ddx20 protein stabilization. Our findings provide novel mechanisms underlying the Olig2-mediated proliferation of NPCs, via the Ddx20-p53 axis, in the embryonic CNS.Subject terms: Oligodendrocyte, Experimental models of disease  相似文献   

2.
MicroRNA-214 (MiR-214) is aberrantly expressed in several human tumors such as ovarian cancer and breast cancer. However, the role of miR-214 in nasopharyngeal carcinoma (NPC) is still unknown. In this study, we report that miR-214 was overexpressed in NPC cell lines and tissues. Silencing of miR-214 by LNA-antimiR-214 in NPC cells resulted in promoting apoptosis and suppressing cell proliferation in vitro, and suppressed tumor growth in nude mice in vivo. Luciferase reporter assay was performed to identify Bim as a direct target of miR-214. Furthermore, this study showed that low Bim expression in NPC tissues correlated with poor survival of NPC patients. Taken together, our findings suggest that miR-214 plays an important role in NPC carcinogenesis.  相似文献   

3.
Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC‐derived exosomes (MSC‐exosomes) on NPC apoptosis and IVD degeneration and investigate the regulatory effect of miRNAs in MSC‐exosomes and associated mechanisms for NPC apoptosis. MSC‐exosomes were isolated from MSC medium, and its anti‐apoptotic effect was assessed in a cell and rat model. The down‐regulated miRNAs in apoptotic NPCs were identified, and their contents in MSC‐exosomes were detected. The target genes of eligible miRNAs and possible downstream pathway were investigated. Purified MSC‐exosomes were taken up by NPCs and suppressed NPC apoptosis. The levels of miR‐21 were down‐regulated in apoptotic NPCs while MSC‐exosomes were enriched in miR‐21. The exosomal miR‐21 could be transferred into NPCs and alleviated TNF‐α induced NPC apoptosis by targeting phosphatase and tensin homolog (PTEN) through phosphatidylinositol 3‐kinase (PI3K)‐Akt pathway. Intradiscal injection of MSC‐exosomes alleviated the NPC apoptosis and IVD degeneration in the rat model. In conclusion, MSC‐derived exosomes prevent NPCs from apoptotic process and alleviate IVD degeneration, at least partly, via miR‐21 contained in exosomes. Exosomal miR‐21 restrains PTEN and thus activates PI3K/Akt pathway in apoptotic NPCs. Our work confers a promising therapeutic strategy for IVD degeneration.  相似文献   

4.
This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.  相似文献   

5.
Endothelial cells represent an important component of the neurogenic niche and may regulate self-renewal and differentiation of neural progenitor cells (NPCs). Whether they have a role in determining the apoptotic fate of NPCs after stress or injury is unclear. NPCs are known to undergo p53-dependent apoptosis after ionizing radiation, whereas endothelial cell apoptosis after irradiation is dependent on membrane acid sphingomyelinase (ASMase) and is abrogated in sphingomyelin phosphodiesterase 1 (smpd1)- (gene that encodes ASMase) deficient mice. Here we found that p53-dependent apoptosis of NPCs in vivo after irradiation was inhibited in smpd1-deficient mice. NPCs cultured from mice, wild type (+/+) or knockout (/), of the smpd1 gene, however, demonstrated no difference in apoptosis radiosensitivity. NPCs transplanted into the hippocampus of smpd1−/− mice were protected against apoptosis after irradiation compared with those transplanted into smpd1+/+ mice. Intravenous administration of basic fibroblast growth factor, which does not cross the blood–brain barrier, known to protect endothelial cells against apoptosis after irradiation also attenuated the apoptotic response of NPCs. These findings provide evidence that endothelial cells may regulate p53-dependent apoptosis of NPCs after genotoxic stress and add support to an important role of endothelial cells in regulating apoptosis of NPCs after injury or in disease.  相似文献   

6.

Background

Neural progenitor cells (NPCs) in the developing neuroepithelium are regulated by intrinsic and extrinsic factors. There is evidence that NPCs form a self-supporting niche for cell maintenance and proliferation. However, molecular interactions and cell-cell contacts and the microenvironment within the neuroepithelium are largely unknown. We hypothesized that cellular proteases especially those associated with the cell surface of NPCs play a role in regulation of progenitor cells in the brain.

Methodology/Principal Findings

In this work, we show that NPCs, isolated from striatal anlage of developing rat brain, express hepatocyte growth factor activator inhibitor-1 and -2 (HAI-1 and HAI-2) that are cell surface-linked serine protease inhibitors. In addition, radial glia cells derived from mouse embryonic stem cells also express HAI-1 and HAI-2. To study the functional significance of HAI-1 and HAI-2 in progenitor cells, we modulated their levels using expression plasmids or silencing RNA (siRNA) transfected into the NPCs. Data showed that overexpression of HAI-1 or HAI-2 decreased cell proliferation of cultured NPCs, whilst their siRNAs had opposite effects. HAI-1 also influenced NPC differentiation by increasing the number of glial fibrillary acidic protein (GFAP) expressing cells in the culture. Expression of HAI-1 in vivo decreased cell proliferation in developing neuroepithelium in E15 old animals and promoted astrocyte cell differentiation in neonatal animals. Studying the regulation of HAI-1, we observed that Bone morphogenetic protein-2 (BMP-2) and BMP-4 increased HAI-1 levels in the NPCs. Experiments using HAI-1-siRNA showed that these BMPs act on the NPCs partly in a HAI-1-dependent manner.

Conclusions

This study shows that the cell-surface serine protease inhibitors, HAI-1 and HAI-2 influence proliferation and cell fate of NPCs and their expression levels are linked to BMP signaling. Modulation of the levels and actions of HAI-1 in NPCs may be of a potential value in stem cell therapies in various brain diseases.  相似文献   

7.
Neuroinflammation is a common feature of acute neurological conditions such as stroke and spinal cord injury, as well as neurodegenerative conditions such as Parkinson''s disease, Alzheimer''s disease, and amyotrophic lateral sclerosis. Previous studies have demonstrated that acute neuroinflammation can adversely affect the survival of neural precursor cells (NPCs) and thereby limit the capacity for regeneration and repair. However, the mechanisms by which neuroinflammatory processes induce NPC death remain unclear. Microglia are key mediators of neuroinflammation and when activated to induce a pro-inflammatory state produce a number of factors that could affect NPC survival. Importantly, in the present study we demonstrate that tumor necrosis factor α (TNFα) produced by lipopolysaccharide-activated microglia is necessary and sufficient to trigger apoptosis in mouse NPCs in vitro. Furthermore, we demonstrate that microglia-derived TNFα induces NPC apoptosis via a mitochondrial pathway regulated by the Bcl-2 family protein Bax. BH3-only proteins are known to play a key role in regulating Bax activation and we demonstrate that microglia-derived TNFα induces the expression of the BH3-only family member Puma in NPCs via an NF-κB-dependent mechanism. Specifically, we show that NF-κB is activated in NPCs treated with conditioned media from activated microglia and that Puma induction and NPC apoptosis is blocked by the NF-κB inhibitor BAY-117082. Importantly, we have determined that NPC apoptosis induced by activated microglia-derived TNFα is attenuated in Puma-deficient NPCs, indicating that Puma induction is required for NPC death. Consistent with this, we demonstrate that Puma-deficient NPCs exhibit an ∼13-fold increase in survival as compared with wild-type NPCs following transplantation into the inflammatory environment of the injured spinal cord in vivo. In summary, we have identified a key signaling pathway that regulates neuroinflammation induced apoptosis in NPCs in vitro and in vivo that could be targeted to promote regeneration and repair in diverse neurological conditions.  相似文献   

8.
Interferon-β (IFN-β) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-β on the central nervous system (CNS) are not well understood. To determine whether IFN-β has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-β and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFNα/β receptor (IFNAR). In response to IFN-β treatment, no effect was observed on differentiation or proliferation. However, IFN-β treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-β treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-β can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.  相似文献   

9.
10.
11.
Yeo JE  Kang SK 《Biochimica et biophysica acta》2007,1772(11-12):1199-1210
This study was designed to investigate possible prevention of apoptotic cell death by selenium, an antioxidant, using cultured brain-derived neural progenitor cells (NPCs) and an experimental mouse brain trauma (BT) model. We tested some of the neuroprotective effects of sodium selenite in NPC cells by monitoring thioredoxin reductase (TR) expression, optimum H(2)O(2) removal, and consequent inhibition of pro-apoptotic events including cytochrome c release and caspase 3 and 9 activation. Analysis of key apoptotic regulators during H(2)O(2)-induced apoptosis of NPCs showed that selenite blocks the activation of c-jun N-terminal protein kinase (JNK)/P38 mitogen-activated protein kinase (MAPK), and Akt survival protein. Moreover, selenite activates p44/42 MAPK and inhibits the downregulation of Bcl2 in selenite-treated NPC cells. For in vivo experiments, the effects of selenite on H(2)O(2) neurotoxicity were tested using several biochemical and morphologic markers. Here we show that selenite potentially inhibits H(2)O(2)-induced apoptosis of NPCs and in traumatic brain injury. This in vivo protective function was also associated with inhibition of H(2)O(2)-induced reactive oxygen species (ROS) generation, cytochrome c release and caspase 3 and 9 activation. Our data show that the protective function of selenite through attenuation of secondary pathological events most likely results from its comprehensive effects that block apoptotic cell death, resulting in the maintenance of functional neurons and in inhibition of astrogliosis. The finding that selenite administration prevents secondary pathological events in an animal model of traumatic brain injury, as well as its efficacy, may provide novel drug targets for treating brain trauma.  相似文献   

12.
Cyclosporin A (CsA) has direct effects on neural stem and progenitor cells (together termed neural precursor cells; NPCs) in the adult central nervous system. Administration of CsA in vitro or in vivo promotes the survival of NPCs and expands the pools of NPCs in mice. Moreover, CsA administration is effective in promoting NPC activation, tissue repair and functional recovery in a mouse model of cortical stroke. The mechanism(s) by which CsA mediates this cell survival effect remains unknown. Herein, we examined both calcineurin-dependent and calcineurin-independent pathways through which CsA might mediate NPC survival. To examine calcineurin-dependent pathways, we utilized FK506 (Tacrolimus), an immunosuppressive molecule that inhibits calcineurin, as well as drugs that inhibit cyclophilin A-mediated activation of calcineurin. To evaluate the calcineurin-independent pathway, we utilized NIM811, a non-immunosuppressive CsA analog that functions independently of calcineurin by blocking mitochondrial permeability transition pore formation. We found that only NIM811 can entirely account for the pro-survival effects of CsA on NPCs. Indeed, blocking signaling pathways downstream of calcineurin activation using nNOS mice did not inhibit CsA-mediated cell survival, which supports the proposal that the effects are calcinuerin-independent. In vivo studies revealed that NIM811 administration mimics the pro-survival effects of CsA on NPCs and promotes functional recovery in a model of cortical stroke, identical to the effects seen with CsA administration. We conclude that CsA mediates its effect on NPC survival through calcineurin-independent inhibition of mitochondrial permeability transition pore formation and suggest that this pathway has potential therapeutic benefits for developing NPC-mediated cell replacement strategies.KEY WORDS: Cyclosporin A, Adult neural precursors, Mitochondrial permeability transition pore formation, Cyclophilin D, Calcineurin-independent signaling, FK506, Stroke  相似文献   

13.
Survival of neuronal progenitors (NPCs) is a critical determinant of the regenerative capacity of brain following cellular loss. Herein, we report for the first time, the increased spontaneous apoptosis of the first acute phase of Experimental Autoimmune Encephalomyelitis (EAE) derived neurospheres in vitro. Neuronal as well as oligodendroglial loss occurs during experimental autoimmune encephalomyelitis (EAE). This loss is replenished spontaneously by the concomitant increase in the NPC proliferation evidenced by the presence of thin myelin sheaths in the remodeled lesions. However, remyelination depends upon the survival of NPCs and their lineage specific differentiation. We observed significant increase (P < 0.001) in number of BrdU (+) cells in ependymal subventricular zone (SVZ) in EAE rats. EAE derived NPCs showed remarkable increase in S-phase population which was indeed due to the decrease in G-phase progeny suggesting activation of neuronal progenitor cells (NPCs) from quiescence. However, EAE derived neurospheres showed limited survival in vitro which was mediated by the significantly (P < 0.01) depolarized mitochondria, elevated Caspase-3 (P < 0.001) and fragmentation of nuclear DNA evidenced by single cell gel electrophoresis. Our results suggest EAE induced spontaneous apoptosis of NPCs in vitro which may increase the possibility of early stage cell death in the negative regulation of the proliferative cell number and may explain the failure of regeneration in human multiple sclerosis.  相似文献   

14.
Highly conserved microRNA-9 (miR-9) has a critical role in various cellular processes including neurogenesis. However, its regulation by neurotropins that are known to mediate neurogenesis remains poorly defined. In this study, we identify platelet-derived growth factor-BB (PDGF-BB)-mediated upregulation of miR-9, which in turn downregulates its target gene monocyte chemotactic protein-induced protein 1 (MCPIP1), as a key player in modulating proliferation, neuronal differentiation as well as migration of neuronal progenitor cells (NPCs). Results indicate that miR-9-mediated NPC proliferation and neuronal differentiation involves signaling via the nuclear factor-kappa B (NF-κB) and cAMP response element-binding protein (CREB) pathways, and that NPC migration involves CREB but not the NF-κB signaling. These findings thus suggest that miR-9-mediated downregulation of MCPIP1 acts as a molecular switch regulation of neurogenesis.  相似文献   

15.
Ovarian carcinoma (OC) is the most lethal gynecological malignancy due to frequent recurrence resulting from cisplatin-resistance. ARL6IP5 is a novel gene implicated to suppress cisplatin-resistance by activating apoptosis and inhibiting DNA repair through XRCC1 and PARP1. We investigated the clinicopathological and prognostic significance of the immunohistochemical ARL6IP5 expression on 79 post-chemotherapy OC patient tissue samples; in vitro, the effect of ARL6IP5 overexpression (OE) and knockdown (KD) on cancer hallmark functions and the effect of ARL6IP5 on the expression of DNA repair and apoptosis-related proteins were observed in OC cells and their cisplatin-resistant (CisR) counterparts. ARL6IP5 expression was significantly associated with chemotherapeutic response and was an independent prognosticator of progression-free and overall survival of high-grade serous OC patients. ARL6IP5-OE decreased cellular proliferation, invasion, migration, adhesion, and increased apoptosis (p < 0.05); the opposite was observed for ARL6IP5-KD. Notably, ARL6IP5-OE reduced cisplatin-resistance of both OC and CisR OC cells, while ARL6IP5-KD increased cisplatin-resistance (p < 0.05). ARL6IP5-OE suppressed the expressions of DNA repair proteins and increased those of pro-apoptotic proteins; the opposite was observed for ARL6IP5-KD. The recombinant ARL6IP5 protein (rARL6IP5) had the greatest apoptotic effect among cisplatin and olaparib, in both OC and CisR OC cells; moreover, rARL6IP5 was the only single agent in CisR OC cells to retain higher apoptotic efficacy compared with control (p < 0.05), indicating that the apoptotic pathway influenced by rARL6IP5 remained effective in CisR OC cells compared to cisplatin and olaparib. In conclusion, we demonstrated that ARL6IP5 is an independent prognosticator of OC patients with cellular functions of a tumor-suppressor, possibly influencing the development of cisplatin-resistance and progression of OC cells through regulation of DNA repair and apoptosis. rARL6IP5 had significantly greater apoptotic efficacy compared to conventional chemotherapeutic agents in both OC and CisR OC cells, suggesting that ARL6IP5 may be a valuable novel chemotherapeutic against CisR OC.Subject terms: Prognostic markers, Ovarian cancer  相似文献   

16.
The generation of myelinating cells from multipotential neural stem cells in the CNS requires the initiation of specific gene expression programs in oligodendrocytes (OLs). We reasoned that microRNAs (miRNAs) could play an important role in this process by regulating genes crucial for OL development. Here we identified miR-7a as one of the highly enriched miRNAs in oligodendrocyte precursor cells (OPCs), overexpression of which in either neural progenitor cells (NPCs) or embryonic mouse cortex promoted the generation of OL lineage cells. Blocking the function of miR-7a in differentiating NPCs led to a reduction in OL number and an expansion of neuronal populations simultaneously. We also found that overexpression of this miRNA in purified OPC cultures promoted cell proliferation and inhibited further maturation. In addition, miR-7a might exert the effects just mentioned partially by directly repressing proneuronal differentiation factors including Pax6 and NeuroD4, or proOL genes involved in oligodendrocyte maturation. These results suggest that miRNA pathway is essential in determining cell fate commitment for OLs and thus providing a new strategy for modulating this process in OL loss diseases.  相似文献   

17.

Background

Chronic morphine treatment inhibits neural progenitor cell (NPC) progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.

Methods

Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU) and cell fate was studied with immunocytochemistry.

Results

Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1) in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.

Conclusions

Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.  相似文献   

18.
The mechanisms that determine whether neural stem cells remain in a proliferative state or differentiate into neurons or glia are largely unknown. Here we establish a pivotal role for gap junction-mediated intercellular communication in determining the proliferation and survival of mouse neural progenitor cells (NPCs). When cultured in the presence of basic fibroblast growth factor (bFGF), NPCs express the gap junction protein connexin 43 and are dye-coupled. Upon withdrawal of bFGF, levels of connexin 43 and dye coupling decrease, and the cells cease proliferating and differentiate into neurons; the induction of gap junctions by bFGF is mediated by p42/p44 mitogen-activated protein kinases. Inhibition of gap junctions abolishes the ability of bFGF to maintain NPCs in a proliferative state resulting in cell differentiation or cell death, while overexpression of connexin 43 promotes NPC self-renewal in the absence of bFGF. In addition to promoting their proliferation, gap junctions are required for the survival of NPCs. Gap junctional communication is therefore both necessary and sufficient to maintain NPCs in a self-renewing state.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号