首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholinergic class of anthelmintic drugs is used for the control of parasitic nematodes. One of this class of drugs, tribendimidine (a symmetrical diamidine derivative, of amidantel), was developed in China for use in humans in the mid-1980s. It has a broader-spectrum anthelmintic action against soil-transmitted helminthiasis than other cholinergic anthelmintics, and is effective against hookworm, pinworms, roundworms, and Strongyloides and flatworm of humans. Although molecular studies on C. elegans suggest that tribendimidine is a cholinergic agonist that is selective for the same nematode muscle nAChR as levamisole, no direct electrophysiological observations in nematode parasites have been made to test this hypothesis. Also the hypothesis that levamisole and tribendimine act on the same receptor, does not explain why tribendimidine is effective against some nematode parasites when levamisole is not. Here we examine the effects of tribendimidine on the electrophysiology and contraction of Ascaris suum body muscle and show that tribendimidine produces depolarization antagonized by the nicotinic antagonist mecamylamine, and that tribendimidine is an agonist of muscle nAChRs of parasitic nematodes. Further pharmacological characterization of the nAChRs activated by tribendimidine in our Ascaris muscle contraction assay shows that tribendimidine is not selective for the same receptor subtypes as levamisole, and that tribendimidine is more selective for the B-subtype than the L-subtype of nAChR. In addition, larval migration inhibition assays with levamisole-resistant Oesophagostomum dentatum isolates show that tribendimidine is as active on a levamisole-resistant isolate as on a levamisole-sensitive isolate, suggesting that the selectivity for levamisole and tribendimidine is not the same. It is concluded that tribendimidine can activate a different population of nematode parasite nAChRs than levamisole, and is more like bephenium. The different nAChR subtype selectivity of tribendimidine may explain why the spectrum of action of tribendimidine is different to that of other cholinergic anthelmintics like levamisole.  相似文献   

2.

Background

Nematode secreted haemoglobins have unusually high affinity for oxygen and possess nitric oxide deoxygenase, and catalase activity thought to be important in protection against host immune responses to infection. In this study, we generated a monoclonal antibody (48Eg) against haemoglobin of the nematode Anisakis pegreffii, and aimed to characterize cross-reactivity of 4E8g against haemoglobins of different nematodes and its potential to mediate protective immunity against a murine hookworm infection.

Methodology/Principal Findings

Immunoprecipitation was used to isolate the 4E8g-binding antigen in Anisakis and Ascaris extracts, which were identified as haemoglobins by peptide mass fingerprinting and MS/MS. Immunological cross-reactivity was also demonstrated with haemoglobin of the rodent hookworm N. brasiliensis. Immunogenicity of nematode haemoglobin in mice and humans was tested by immunoblotting. Anisakis haemoglobin was recognized by IgG and IgE antibodies of Anisakis-infected mice, while Ascaris haemoglobin was recognized by IgG but not IgE antibodies in mouse and human sera. Sequencing of Anisakis haemoglobin revealed high similarity to haemoglobin of a related marine nematode, Psuedoterranova decipiens, which lacks the four –HKEE repeats of Ascaris haemoglobin important in octamer assembly. The localization of haemoglobin in the different parasites was examined by immunohistochemistry and associated with the excretory-secretary ducts in Anisakis, Ascaris and N. brasiliensis. Anisakis haemoglobin was strongly expressed in the L3 stage, unlike Ascaris haemoglobin, which is reportedly mainly expressed in adult worms. Passive immunization of mice with 4E8g prior to infection with N. brasiliensis enhanced protective Th2 immunity and led to a significant decrease in worm burdens.

Conclusion

The monoclonal antibody 4E8g targets haemoglobin in broadly equivalent anatomical locations in parasitic nematodes and enhances host immunity to a hookworm infection.  相似文献   

3.
In the absence of efficient alternative strategies, the control of parasitic nematodes, impacting human and animal health, mainly relies on the use of broad-spectrum anthelmintic compounds. Unfortunately, most of these drugs have a limited single-dose efficacy against infections caused by the whipworm, Trichuris. These infections are of both human and veterinary importance. However, in contrast to a wide range of parasitic nematode species, the narrow-spectrum anthelmintic oxantel has a high efficacy on Trichuris spp. Despite this knowledge, the molecular target(s) of oxantel within Trichuris is still unknown. In the distantly related pig roundworm, Ascaris suum, oxantel has a small, but significant effect on the recombinant homomeric Nicotine-sensitive ionotropic acetylcholine receptor (N-AChR) made up of five ACR-16 subunits. Therefore, we hypothesized that in whipworms, a putative homolog of an ACR-16 subunit, can form a functional oxantel-sensitive receptor. Using the pig whipworm T. suis as a model, we identified and cloned a novel ACR-16-like subunit and successfully expressed the corresponding homomeric channel in Xenopus laevis oocytes. Electrophysiological experiments revealed this receptor to have distinctive pharmacological properties with oxantel acting as a full agonist, hence we refer to the receptor as an O-AChR subtype. Pyrantel activated this novel O-AChR subtype moderately, whereas classic nicotinic agonists surprisingly resulted in only minor responses. We observed that the expression of the ACR-16-like subunit in the free-living nematode Caenorhabditis elegans conferred an increased sensitivity to oxantel of recombinant worms. We demonstrated that the novel Tsu-ACR-16-like receptor is indeed a target for oxantel, although other receptors may be involved. These finding brings new insight into the understanding of the high sensitivity of whipworms to oxantel, and highlights the importance of the discovery of additional distinct receptor subunit types within Trichuris that can be used as screening tools to evaluate the effect of new synthetic or natural anthelmintic compounds.  相似文献   

4.

Background

Few studies have investigated the relative influence of individual susceptibility versus household exposure factors versus regional clustering of infection on soil transmitted helminth (STH) transmission. The present study examined reinfection dynamics and spatial clustering of Ascaris lumbricoides, Trichuris trichiura and hookworm in an extremely impoverished indigenous setting in rural Panamá over a 16 month period that included two treatment and reinfection cycles in preschool children.

Methodology/Principle Findings

Spatial cluster analyses were used to identify high prevalence clusters for each nematode. Multivariate models were then used (1) to identify factors that differentiated households within and outside the cluster, and (2) to examine the relative contribution of regional (presence in a high prevalence cluster), household (household density, asset-based household wealth, household crowding, maternal education) and individual (age, sex, pre-treatment eggs per gram (epg) feces, height-for-age, latrine use) factors on preschool child reinfection epgs for each STH. High prevalence spatial clusters were detected for Trichuris and hookworm but not for Ascaris. These clusters were characterized by low household density and low household wealth indices (HWI). Reinfection epg of both hookworm and Ascaris was positively associated with pre-treatment epg and was higher in stunted children. Additional individual (latrine use) as well as household variables (HWI, maternal education) entered the reinfection models for Ascaris but not for hookworm.

Conclusions/Significance

Even within the context of extreme poverty in this remote rural setting, the distinct transmission patterns for hookworm, Trichuris and Ascaris highlight the need for multi-pronged intervention strategies. In addition to poverty reduction, improved sanitation and attention to chronic malnutrition will be key to reducing Ascaris and hookworm transmission.  相似文献   

5.
Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR.  相似文献   

6.
We have previously shown a reduction in anaemia and wasting malnutrition in infants <3 years old in Pemba Island, Zanzibar, following repeated anthelminthic treatment for the endemic gastrointestinal (GI) nematodes Ascaris lumbricoides, hookworm and Trichuris trichiura. In view of the low intensity of worm infections in this age group, this was unexpected, and it was proposed that immune responses to the worms rather than their direct effects may play a significant role in morbidity in infants and that anthelminthic treatment may alleviate such effects. Therefore, the primary aims of this study were to characterise the immune response to initial/early GI nematode infections in infants and the effects of anthelminthic treatment on such immune responses. The frequency and levels of Th1/Th2 cytokines (IL-5, IL-13, IFN-γ and IL-10) induced by the worms were evaluated in 666 infants aged 6–24 months using the Whole Blood Assay. Ascaris and hookworm antigens induced predominantly Th2 cytokine responses, and levels of IL-5 and IL-13 were significantly correlated. The frequencies and levels of responses were higher for both Ascaris positive and hookworm positive infants compared with worm negative individuals, but very few infants made Trichuris-specific cytokine responses. Infants treated every 3 months with mebendazole showed a significantly lower prevalence of infection compared with placebo-treated controls at one year following baseline. At follow-up, cytokine responses to Ascaris and hookworm antigens, which remained Th2 biased, were increased compared with baseline but were not significantly affected by treatment. However, blood eosinophil levels, which were elevated in worm-infected children, were significantly lower in treated children. Thus the effect of deworming in this age group on anaemia and wasting malnutrition, which were replicated in this study, could not be explained by modification of cytokine responses but may be related to eosinophil function.  相似文献   

7.

Background

Hookworm infections are one of the most important parasitic infections of humans worldwide, considered by some second only to malaria in associated disease burden. Single-dose mass drug administration for soil-transmitted helminths, including hookworms, relies primarily on albendazole, which has variable efficacy. New and better hookworm therapies are urgently needed. Bacillus thuringiensis crystal protein Cry5B has potential as a novel anthelmintic and has been extensively studied in the roundworm Caenorhabditis elegans. Here, we ask whether single-dose Cry5B can provide therapy against a hookworm infection and whether C. elegans mechanism-of-action studies are relevant to hookworms.

Methodology/Principal Findings

To test whether the C. elegans invertebrate-specific glycolipid receptor for Cry5B is relevant in hookworms, we fed Ancylostoma ceylanicum hookworm adults Cry5B with and without galactose, an inhibitor of Cry5B-C. elegans glycolipid interactions. As with C. elegans, galactose inhibits Cry5B toxicity in A. ceylanicum. Furthermore, p38 mitogen-activated protein kinase (MAPK), which controls one of the most important Cry5B signal transduction responses in C. elegans, is functionally operational in hookworms. A. ceylanicum hookworms treated with Cry5B up-regulate p38 MAPK and knock down of p38 MAPK activity in hookworms results in hypersensitivity of A. ceylanicum adults to Cry5B attack. Single-dose Cry5B is able to reduce by >90% A. ceylanicum hookworm burdens from infected hamsters, in the process eliminating hookworm egg shedding in feces and protecting infected hamsters from blood loss. Anthelmintic activity is increased about 3-fold, eliminating >97% of the parasites with a single 3 mg dose (∼30 mg/kg), by incorporating a simple formulation to help prevent digestion in the acidic stomach of the host mammal.

Conclusions/Significance

These studies advance the development of Cry5B protein as a potent, safe single-dose anthelmintic for hookworm therapy and make available the information of how Cry5B functions in C. elegans in order to study and improve Cry5B function against hookworms.  相似文献   

8.
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.  相似文献   

9.
BackgroundThe lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner.Conclusions/SignificanceThe challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides.  相似文献   

10.
Almost nothing is known about atypical kinases in multicellular organisms, including parasites. Supported by information and data available for the free-living nematode, Caenorhabditis elegans, and other eukaryotes, the present article describes three RIO kinase genes, riok-1, riok-2 and riok-3, from Haemonchus contortus, one of the most important parasitic nematodes of small ruminants. Analyses of these genes and their products predict that they each play critical roles in the developmental pathways of parasitic nematodes. The findings of this review indicate prospects for functional studies of these genes in C. elegans (as a surrogate) and opportunities for the design of a novel class of nematode-specific inhibitors of RIO kinases. The latter aspect is of paramount importance, given the serious problems linked to anthelmintic resistance in parasitic nematode populations of livestock.  相似文献   

11.
The present study was conducted to determine the prevalence of helminth eggs excreted in the faeces of stray cats, dogs and in soil samples. A total of 505 fresh samples of faeces (from 227 dogs and 152 cats) and soil were collected. The egg stage was detected via microscopy after the application of formalin–ether concentration technique. Genomic DNA was extracted from the samples containing hookworm eggs and used for further identification to the species level using real-time polymerase chain reaction coupled with high resolution melting analysis. Microscopic observation showed that the overall prevalence of helminth eggs among stray cats and dogs was 75.7% (95% CI = 71.2%–79.9%), in which 87.7% of dogs and 57.9% of cats were infected with at least one parasite genus. Five genera of heliminth eggs were detected in the faecal samples, including hookworms (46.4%), Toxocara (11.1%), Trichuris (8.4%), Spirometra (7.4%) and Ascaris (2.4%). The prevalence of helminth infections among stray dogs was significantly higher than that among stray cats (p < 0.001). Only three genera of helminths were detected in soil samples with the prevalence of 23% (95% CI = 15.1%–31%), consisting of hookworms (16.6%), Ascaris (4%) and Toxocara (2.4%). The molecular identification of hookworm species revealed that Ancylostoma ceylanicum was dominant in both faecal and soil samples. The dog hookworm, Ancylostoma caninum, was also detected among cats, which is the first such occurrence reported in Malaysia till date. This finding indicated that there was a cross-infection of A. caninum between stray cats and dogs because of their coexistent within human communities. Taken together, these data suggest the potential role of stray cats and dogs as being the main sources of environmental contamination as well as for human infections.  相似文献   

12.
Few anthelminthic drugs are available for human use despite the significant burden caused by helminth infections. We studied the activities of mangostin, a major bioactive xanthone isolated from the pericarp and fruit of Garcinia mangostana and of the synthetic derivative mangostin diacetate. Mangostin and mangostin diacetate lacked activity against the nematodes Heligmosomoides polygyrus (third-stage larvae (L3)), Ancylostoma ceylanicum L3, and Trichuris muris adults and showed only low activity against A. ceylanicum adults (IC50s of 91 μg/ml) in vitro. Mangostin showed promising activities (IC50 of 2.9–15.6 μg/ml) against the trematodes Schistosoma mansoni, Echinostoma caproni, and Fasciola hepatica in vitro. Single oral doses (400 mg/kg and 800 mg/kg) of the drugs achieved worm burden reductions ranging from 0 to 38% and 11–54% against S. mansoni and E. caproni in vivo, respectively. Pharmacokinetic studies would be helpful to understand the differences observed between in vitro and in vivo activities and lacking dose–response relationships.  相似文献   

13.

Background

The combination of deworming and improved sanitation or hygiene may result in greater reductions in soil-transmitted helminth (STH) infection than any single intervention on its own. We measured STH prevalence in rural Bangladesh and assessed potential interactions among deworming, hygienic latrines, and household finished floors.

Methodology

We conducted a cross-sectional survey (n = 1,630) in 100 villages in rural Bangladesh to measure three exposures: self-reported deworming consumption in the past 6 months, access to a hygienic latrine, and household flooring material. We collected stool samples from children 1–4 years, 5–12 years, and women 15–49 years. We performed mini-FLOTAC on preserved stool samples to detect Ascaris lumbricoides, Enterobius vermicularis, hookworm, and Trichuris trichiura ova. Approximately one-third (32%) of all individuals and 40% of school-aged children had an STH infection. Less than 2% of the sample had moderate/heavy intensity infections. Deworming was associated with lower Ascaris prevalence (adjusted prevalence ratio (PR) = 0.53; 95% CI 0.40, 0.71), but there was no significant association with hookworm (PR = 0.93, 95% CI 0.60, 1.44) or Trichuris (PR = 0.90, 95% CI 0.74, 1.08). PRs for hygienic latrine access were 0.91 (95% CI 0.67,1.24), 0.73 (95% CI 0.43,1.24), and 1.03 (95% CI 0.84,1.27) for Ascaris, hookworm, and Trichuris, respectively. Finished floors were associated with lower Ascaris prevalence (PR = 0.56, 95% CI 0.32, 0.97) but not associated with hookworm (PR = 0.48 95% CI 0.16,1.45) or Trichuris (PR = 0.98, 95% CI 0.72,1.33). Across helminths and combinations of exposures, adjusted prevalence ratios for joint exposures were consistently more protective than those for individual exposures.

Conclusions

We found moderate STH prevalence in rural Bangladesh among children and women of childbearing age. This study is one of the first to examine independent and combined associations with deworming, sanitation, and hygiene. Our results suggest that coupling deworming with sanitation and flooring interventions may yield more sustained reductions in STH prevalence.  相似文献   

14.

Background

Intestinal parasitic nematodes such as hookworms, Ascaris lumbricoides, and Trichuris trichiura are amongst most prevalent tropical parasites in the world today. Although these parasites cause a tremendous disease burden, we have very few anthelmintic drugs with which to treat them. In the past three decades only one new anthelmintic, tribendimidine, has been developed and taken into human clinical trials. Studies show that tribendimidine is safe and has good clinical activity against Ascaris and hookworms. However, little is known about its mechanism of action and potential resistance pathway(s). Such information is important for preventing, detecting, and managing resistance, for safety considerations, and for knowing how to combine tribendimidine with other anthelmintics.

Methodology/Principal Findings

To investigate how tribendimidine works and how resistance to it might develop, we turned to the genetically tractable nematode, Caenorhabditis elegans. When exposed to tribendimidine, C. elegans hermaphrodites undergo a near immediate loss of motility; longer exposure results in extensive body damage, developmental arrest, reductions in fecundity, and/or death. We performed a forward genetic screen for tribendimidine-resistant mutants and obtained ten resistant alleles that fall into four complementation groups. Intoxication assays, complementation tests, genetic mapping experiments, and sequencing of nucleic acids indicate tribendimidine-resistant mutants are resistant also to levamisole and pyrantel and alter the same genes that mutate to levamisole resistance. Furthermore, we demonstrate that eleven C. elegans mutants isolated based on their ability to resist levamisole are also resistant to tribendimidine.

Conclusions/Significance

Our results demonstrate that the mechanism of action of tribendimidine against nematodes is the same as levamisole and pyrantel, namely, tribendimidine is an L-subtype nAChR agonist. Thus, tribendimidine may not be a viable anthelmintic where resistance to levamisole or pyrantel already exists but could productively be used where resistance to benzimidazoles exists or could be combined with this class of anthelmintics.  相似文献   

15.
Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic.  相似文献   

16.
Intestinal helminth parasites (worms) have afflicted humans throughout history and their eggs are readily detected in archaeological deposits including at locations where intestinal parasites are no longer considered endemic (e.g. the UK). Parasites provide valuable archaeological insights into historical health, sanitation, hygiene, dietary and culinary practices, as well as other factors. Differences in the prevalence of helminths over time may help us understand factors that affected the rate of infection of these parasites in past populations. While communal deposits often contain relatively high numbers of parasite eggs, these cannot be used to calculate prevalence rates, which are a key epidemiological measure of infection. The prevalence of intestinal helminths was investigated through time in England, based on analysis of 464 human burials from 17 sites, dating from the Prehistoric to Industrial periods. Eggs from two faecal-oral transmitted nematodes (Ascaris sp. and Trichuris sp.) and the food-derived cestodes (Taenia spp. and Diphyllobothrium latum syn Dibothriocephalus latus) were identified, although only Ascaris was detected at a high frequency. The changing prevalence of nematode infections can be attributed to changes in effective sanitation or other factors that affect these faecal-oral transmitted parasites and the presence of cestode infections reflect dietary and culinary preferences. These results indicate that the impact of helminth infections on past populations varied over time, and that some locations witnessed a dramatic reduction in parasite prevalence during the industrial era (18th-19th century), whereas other locations continued to experience high prevalence levels. The factors underlying these reductions and the variation in prevalence provide a key historical context for modern anthelmintic programs.  相似文献   

17.
Nematode parasite infections cause disease in humans and animals and threaten global food security by reducing productivity in livestock and crop farming. The escalation of anthelmintic resistance in economically important nematode parasites underscores the need for the identification of novel drug targets in these worms. Nematode neuropeptide signalling is an attractive system for chemotherapeutic exploitation, with neuropeptide G-protein coupled receptors (NP-GPCRs) representing the lead targets. In order to successfully validate NP-GPCRs for parasite control it is necessary to characterise their function and importance to nematode biology. This can be aided through identification of receptor activating ligand(s) via deorphanisation. Such efforts require the identification of all neuropeptide ligands within parasites. Here we mined the genomes of nine therapeutically relevant pathogenic nematodes to characterise the neuropeptide-like protein complements and demonstrate that: (i) parasitic nematodes possess a reduced complement of neuropeptide-like protein-encoding genes relative to Caenorhabditis elegans; (ii) parasite neuropeptide-like protein profiles are broadly conserved between nematode clades; (iii) five Ce-nlps are completely conserved across the nematode species examined; (iv) the extent and position of neuropeptide-like protein-motif conservation is variable; (v) novel RPamide-encoding genes are present in parasitic nematodes; (vi) novel Allatostatin-C-like peptide encoding genes are present in both C. elegans and parasitic nematodes; (vii) novel neuropeptide-like protein families are absent in C. elegans; and (viii) highly conserved nematode neuropeptide-like proteins are bioactive. These data highlight the complexity of nematode neuropeptide-like proteins and reveal the need for nomenclature revision in this diverse neuropeptide family. The identification of neuropeptide-like protein ligands, and characterisation of those with functional relevance, advance our understanding of neuropeptide signalling to support exploitation of the neuropeptidergic system as an anthelmintic target.  相似文献   

18.
In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community.  相似文献   

19.
Ancylostoma ceylanicum is recognized as the only zoonotic hookworm species that is able to mature into adult stage in the human intestine. While human infections caused by this hookworm species have been reported from neighboring countries and this hookworm is prevalent in dogs in Vietnam, human infection has never been reported in Vietnam. The present study, therefore, aimed to identify human infections with A. ceylanicum in Vietnam. A total of 526 fecal samples from the residents in Long An Province were collected and the presence of hookworm eggs was detected by the Kato-Katz method. The results indicated that the overall prevalence of human hookworm infection was 85/526 (16.2%). After filter paper culture, 3rd stage larvae were successfully obtained from 48 egg-positive samples. The larvae were identified for their species using semi-nested PCR-RLFP on the cox1 gene. As a result, two hookworm species were confirmed; single species infections with Necator americanus or A. ceylanicum, and mixed infections with both species were found in 47.9%, 31.3%, and 20.8% of the samples, respectively.  相似文献   

20.
Although Ancylostoma ceylanicum is known to be an endemic and widely distributed hookworm of dogs and cats in Asia, its contribution to human morbidity as a potentially zoonotic hookworm remains largely unexplored. Since its discovery by Lane (1913) as a ‘new parasite’ of humans a century ago, the hookworm has been regarded as a ‘rare’ and ‘abnormal’ parasite and largely overlooked in surveys of human parasites. Recent molecular-based surveys in Asia, however, have demonstrated that A. ceylanicum is the second most common hookworm species infecting humans, comprising between 6% and 23% of total patent hookworm infections. In experimentally induced infections, A. ceylanicum mimics the clinical picture produced by the anthroponotic hookworms of ‘ground itch’ and moderate to severe abdominal pain in the acute phase. Natural infections with A. ceylanicum in humans have been reported in almost all geographical areas in which the hookworm is known to be endemic in dogs and cats, however for the majority of reports, no clinical data are available. Much like the anthroponotic hookworm species, patent A. ceylanicum adults can isolate within the jejunum to produce chronic infections that on occasion, may occur in high enough burdens to produce anaemia. In addition, the hookworm can act much like Ancylostoma caninum and be found lower in the gastrointestinal tract leading to abdominal distension and pain, diarrhoea and occult blood in the faeces accompanied by peripheral eosinophilia. Whether A. ceylanicum is capable of producing both classical hookworm disease and evoking morbidity through an uncontrolled allergic response in some individuals remains unascertained. Future investigations combining the use of molecular diagnostic tools with clinical and pathological data will shed further light on its role as a human pathogen. The control of this zoonosis necessitates an integrated and inter-sectorial “One Health” approach be adopted in communities where large numbers of dogs share a close relationship with humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号