首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated P CO2 (0.2 kPa CO2) at different levels of physiological organisation.

Results

For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated P CO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher P CO2 was compensated for by intracellular bicarbonate accumulation.

Conclusion

The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and P CO2.
  相似文献   

2.
Summary Many species of fish show a partial or complete thermal compensation of metabolic rate on acclimation from summer to winter temperatures. In the present study Crucian carp (Carassius carassius L.) were acclimated for two months to either 2° C or 28° C and the effects of temperature acclimation on mitochondrial content and capillary supply to myotomal muscles determined.Mitochondria occupy 31.4% and 14.7% of slow fibre volume in 2°C- and 28° C-acclimated fish, respectively. Fast muscles of coldbut not warm-acclimated fish show a marked heterogeneity in mitochondrial volume. For example, only 5 % of fast fibres in 28° C-acclimated fish contain 5 % mitochondria compared to 34 % in 2° C-acclimated fish. The mean mitochondrial volume in fast fibres is 6.1 % and 1.6 % for coldand warm-acclimated fish, respectively.Increases in the mitochondrial compartment with cold acclimation were accompanied by an increase in the capillary supply to both fast (1.4 to 2.9 capillaries/fibre) and slow (2.2 to 4.8 capillaries/fibre) muscles. The percentage of slow fibre surface vascularised is 13.6 in 28° C-acclimated fish and 32.1 in 2° C-acclimated fish. Corresponding values for fast muscle are 2.3 and 6.6 % for warm and cold-acclimated fish, respectively. Maximum hypothetical diffusion distances are reduced by approximately 23–30 % in the muscles of 2° C-compared to 28° C-acclimated fish. However, the capillary surface supplying 1 3 of mitochondria is similar at both temperatures.Factors regulating thermal compensation of aerobic metabolism and the plasticity of fish muscle to environmental change are briefly discussed.  相似文献   

3.
Capacities and effects of cold or warm acclimation were investigated in two zoarcid species from the North Sea (Zoarces viviparus) and the Antarctic (Pachycara brachycephalum) by investigating temperature dependent mitochondrial respiration and activities of citrate synthase (CS) and NADP+ -dependent isocitrate dehydrogenase (IDH) in the liver. Antarctic eelpout were acclimated to 5°C and 0°C (controls) for at least 10 months, whereas boreal eelpout, Z. viviparus (North Sea) were acclimated to 5°C and to 10°C (controls). Liver sizes were found to be increased in both species in the cold, with a concomitant rise in liver mitochondrial protein content. As a result, total liver state III rates were elevated in both cold-versus and warm-exposed P. brachycephalum and Z. viviparus, with the highest rates in boreal eelpout acclimated to 5°C. CS and IDH activities in the total liver were similar in Z. viviparus acclimated to 5°C and 10°C, but decreased in those warm acclimated versus control P. brachycephalum. Enzyme capacities in the total liver were higher in eelpout from Antarctica than those from the North Sea. In conclusion, cold compensation of aerobic capacities in the liver seems to be linked to an increase in organ size with unchanged specific mitochondrial protein content. Despite its life in permanently cold climate, P. brachycephalum was able to reduce liver aerobic capacities in warm climate and thus, displayed a capacity for temperature acclimation.  相似文献   

4.
Brandt's voles (Lasiopodomys brandti) exposed to cold (5±1 °C) or warm (23±1 °C) showed some physiological and biochemical variations which might be important in adaptation to their environments. Cold acclimation induced increases in resting metabolic rate (RMR) and the serum triiodothyronine (T3) level, the state-4 respiration of liver and muscle mitochondria were activated after 7 days when animals exposed to cold, and the activity of cytochrome c oxidase (COX) of liver and muscle mitochondria tended to rise with cold exposure. RMR and T3 level decreased during warm acclimation. The state-4 respiration of liver mitochondria declined after 3 days and muscle after 7 days when animals exposed to warm, and the activities of COX of liver and muscle mitochondria tended to decrease with warm acclimation. The cold activation of liver and muscle mitochondrial respiration (regulated by T3) was one of the cytological mechanisms of elevating RMR. Both state-4 respiration and COX activity of brown adipose tissue (BAT) mitochondria increased significantly during cold acclimation and decreased markedly after acclimated to warm. The uncoupling protein 1 (UCP1) contents in BAT increased after exposure to cold and decreased after warm acclimation. Nonshivering thermogenesis (NST) plays an important role in the process of thermoregulation under cold acclimation for Brandt's voles. Changes in thermogenesis is a important way to cold adaptation for Brandt's voles in natural environments.  相似文献   

5.
There is a significant reduction in overall maximum power output of muscle at low temperatures due to reduced steady-state (i.e. maximum activation) power-generating capabilities of muscle. However, during cyclical locomotion, a further reduction in power is due to the interplay between non-steady-state contractile properties of muscle (i.e. rates of activation and relaxation) and the stimulation and the length-change pattern muscle undergoes in vivo. In particular, even though the relaxation rate of scup red muscle is slowed greatly at cold temperatures (10°C), warm-acclimated scup swim with the same stimulus duty cycles at cold as they do at warm temperature, not affording slow-relaxing muscle any additional time to relax. Hence, at 10°C, red muscle generates extremely low or negative work in most parts of the body, at all but the slowest swimming speeds.Do scup shorten their stimulation duration and increase muscle relaxation rate during cold acclimation? At 10°C, electromyography (EMG) duty cycles were 18% shorter in cold-acclimated scup than in warm-acclimated scup. But contrary to the expectations, the red muscle did not have a faster relaxation rate, rather, cold-acclimated muscle had an approximately 50% faster activation rate. By driving cold- and warm-acclimated muscle through cold- and warm-acclimated conditions, we found a very large increase in red muscle power during swimming at 10°C. As expected, reducing stimulation duration markedly increased power output. However, the increased rate of activation alone produced an even greater effect. Hence, to fully understand thermal acclimation, it is necessary to examine the whole system under realistic physiological conditions.  相似文献   

6.
Influence of growth temperature on the capacity of the mitochondrial alternative pathway of electron transport was investigated using etiolated corn (Zea mays L.) seedlings. These seedlings were grown to comparable size in either a warm (30°C) or a cold (13°C) temperature regime, and then their respiration rates were measured as O2 uptake at 25°C. The capacity of the alternative pathway (KCN-insensitive O2 uptake) was found essentially to double in shoots of cold-grown seedlings. This increased capacity slowly developed over several days growth in the cold, but was lost within 1 day when the seedlings were exposed to a warm regime. When mitochondria were isolated from the shoots of these seedlings, a greater potential for flow through the alternative path was observed in mitochondria from the cold-grown seedlings with all substrates used (an average increase of 84%). Using exogenous NADH as the substrate, the effect of the electrochemical gradient on measurable capacities of the cytochrome and alternative pathways was investigated in mitochondria from both etiolated seedlings and thermogenic spadices. The uncoupler FCCP (p-trifluoromethoxycarbonylcyanide phenylhydrazone) was used to diminish the electrochemical gradient when desired. In corn (Zea mays L.) shoot and mung bean (Vigna radiata L.) hypocotyl mitochondria, which have relatively low capacities of the alternative pathway, increased flow through the cytochrome chain in the absence of the electrochemical gradient was found not to influence the potential for flow through the alternative path. However, in mitochondria from skunk cabbage (Symplocarpus foetidus L.) and voodoo lily (Sauromatum guttatum Schott) spadices, which have high capacities of the alternative pathway, increased flow through the cytochrome chain in the absence of the gradient occurred at the expense of flow through the alternative pathway. These results suggest that in mitochondria of thermogenic spadices, the combined capacities of the cytochrome and alternative paths exceed the capacity of the exogenous NADH dehydrogenase. The effect of assay pH on measurable capacities of the cytochrome and alternative paths was determined over a pH range of 5.6 to 8.8 using exogenous NADH as the mitochondrial substrate. When the electrochemical gradient was present, it limited the electron transport rate and little effect of assay pH was observed. However, when formation of the gradient was prevented through inclusion of FCCP, measurable capacities of the cytochrome and alternative paths were found to be greatly influenced by pH. This experiment also revealed that the potential for respiratory control is largely dependent upon the assay pH.  相似文献   

7.
Reptiles thermoregulate behaviourally, but change their preferred temperature and the optimal temperature for performance seasonally. We evaluated whether the digestive and locomotor systems of the alligator show parallel metabolic adjustments during thermal acclimation. To this end, we allowed juvenile alligators to grow under thermal conditions typical of winter and summer, providing them with seasonally appropriate basking opportunities. Although mean body temperatures of alligators in these groups differed by approximately 10°C, their growth and final anatomic status was equivalent. While hepatic mitochondria isolated from cold-acclimated alligators had higher oxidative capacities at 30°C than those from warm-acclimated alligators, the capacities did not differ at 20°C. Cold acclimation decreased maximal oxidative capacities of muscle mitochondria. For mitochondria from both organs and acclimation groups, palmitate increased oligomycin-inhibited respiration. GDP addition reduced palmitate-uncoupled rates more in liver mitochondria from warm- than cold-acclimated alligators. In muscle mitochondria, carboxyatractyloside significantly reduced palmitate-uncoupled rates. This effect was not changed by thermal acclimation. The aerobic capacity of liver, skeletal muscle and duodenum, as estimated by activities of cytochrome c oxidase (COX), increased with cold acclimation. At acclimation temperatures, the activities of COX and citrate synthase (CS) in these organs were equivalent. By measuring COX and CS in isolated mitochondria and tissue extracts, we estimated that cold acclimation did not change the mitochondrial content in liver, but increased that of muscle. The thermal compensation of growth rates and of the aerobic capacity of the locomotor and digestive systems suggests that alligators optimised metabolic processes for the seasonally altered, preferred body temperature. The precision of this compensatory response exceeds that typically shown by aquatic ectotherms whose body temperatures are at the mercy of their habitat.  相似文献   

8.
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system.  相似文献   

9.

Background

Arabidopsis plants accumulate maltose from starch breakdown during cold acclimation. The Arabidopsis mutant, maltose excess1-1, accumulates large amounts of maltose in the plastid even in the warm, due to a deficient plastid envelope maltose transporter. We therefore investigated whether the elevated maltose level in mex1-1 in the warm could result in changes in metabolism and physiology typical of WT plants grown in the cold.

Principal Findings

Grown at 21 °C, mex1-1 plants were much smaller, with fewer leaves, and elevated carbohydrates and amino acids compared to WT. However, after transfer to 4 °C the total soluble sugar pool and amino acid concentration was in equal abundance in both genotypes, although the most abundant sugar in mex1-1 was still maltose whereas sucrose was in greatest abundance in WT. The chlorophyll a/b ratio in WT was much lower in the cold than in the warm, but in mex1-1 it was low in both warm and cold. After prolonged growth at 4 °C, the shoot biomass, rosette diameter and number of leaves at bolting were similar in mex1-1 and WT.

Conclusions

The mex1-1 mutation in warm-grown plants confers aspects of cold acclimation, including elevated levels of sugars and amino acids and low chlorophyll a/b ratio. This may in turn compromise growth of mex1-1 in the warm relative to WT. We suggest that elevated maltose in the plastid could be responsible for key aspects of cold acclimation.  相似文献   

10.
Insect cold tolerance is both phenotypically-plastic and evolutionarily labile, but the mechanisms underlying this variation are uncertain. Chill-susceptible insects lose ion and water homeostasis in the cold, which contributes to the development of injuries and eventually death. We thus hypothesized that more cold-tolerant insects will better maintain ion and water balance at low temperatures. We used rapid cold-hardening (RCH) and cold acclimation to improve cold tolerance of male Gryllus pennsylvanicus, and also compared this species to its cold-tolerant relative (Gryllus veletis). Cold acclimation and RCH decreased the critical thermal minimum (CTmin) and chill coma recovery time (CCR) in G. pennsylvanicus, but while cold acclimation improved survival of 0 °C, RCH did not; G. veletis was consistently more cold-tolerant (and had lower CCR and CTmin) than G. pennsylvanicus. During cold exposure, hemolymph water and Na+ migrated to the gut of warm-acclimated G. pennsylvanicus, which increased hemolymph [K+] and decreased muscle K+ equilibrium potentials. By contrast, cold-acclimated G. pennsylvanicus suffered a smaller loss of ion and water homeostasis during cold exposure, and this redistribution did not occur at all in cold-exposed G. veletis. The loss of ion and water balance was similar between RCH and warm-acclimated G. pennsylvanicus, suggesting that different mechanisms underlie decreased CCR and CTmin compared to increased survival at 0 °C. We conclude that increased tolerance of chilling is associated with improved maintenance of ion and water homeostasis in the cold, and that this is consistent for both phenotypic plasticity and evolved cold tolerance.  相似文献   

11.
Summary The larvae ofGynaephora groenlandica, a long-lived moth endemic to the high arctic, are perennially freeze-tolerant and able to increase their freeze-tolerance by synthesizing glycerol. Cold-induced mitochondrial changes were correlated (using electron microscopy, DNA staining, cytochrome c assay, and oxygen uptake) with glycerol production (using NMR spectroscopy) in larvae under different acclimations and in the field. Hypometabolism in summer- or warm-acclimated larvae led to glycerol accumulation. Extended exposure to near-zero or freezing temperatures caused mitochondrial degradation and glycerol accumulation. Rapid freezing of warm-acclimated larvae did not result in mitochondrial breakdown. Mitochondrial reconstitution upon warm-acclimation occurred much more rapidly (<1 week) than did degradation (>2 months). Concomitant with mitochondrial breakdown was reduced oxidative metabolism, but the cytochrome c concentration remained independent of acclimation temperature. The adaptive response to cold by mitochondrial degradation and glycerol accumulation byG. groenlandica may be linked to diapause in other species of ectotherms.  相似文献   

12.
The effect of temperature and β-adrenergic agonist (BAA) on in vitro rates of fatty acid synthesis and catalytic activity of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) was examined in wether lambs after 5 weeks at either 0 or 20°C. Feeding BAA increased (P<0.05) rate of fatty acid synthesis by 38% in subcutaneous adipose (SC) tissue from cold-acclimated animals but the rate decreased (P<0.05) by 27% in SC tissue from warm-acclimated animals. In mesenteric fat (MS), BAA increased (P<0.05) fatty acid synthesis in the cold environment. In perirenal (PR) fat, rate of fatty acid synthesis was reduced (P<0.05) by 20% by BAA in the warm but had no effect in the cold. Activity of ACC in longissimus muscle was depressed (P<0.05) when BAA was fed in the warm environment. In adipose tissues BAA reduced (P<0.05) ACC activity in the warm, but reduced activity in the cold was limited to SC tissue. In PR tissue FAS activity was reduced (P<0.05) in the cold environment, while BAA increased FAS activity in the warm environment. Western blot analysis showed two isoforms of ACC with MW of 280 000 and 265 000 Da in longissimus muscle whereas only one isoform was recognized in each of Biceps femoris (280 000 Da) and adipose tissues (265 000 Da). Feeding BAA in the cold environment reduced (P<0.05) ACC and FAS immunoprotein expression in both MS and PR adipose tissues. The studies indicate that the effect of BAA on fatty acid synthesis and lipogenic enzymes is influenced by acclimation temperature.  相似文献   

13.
Monodelphis domestica (Marsupialia: Didelphidae) was used as a model animal to investigate and compare muscle adaptation to exercise training and cold exposure. The experimental treatment consisted of four groups of animals: either warm or cold acclimation temperature and with or without endurance exercise training. Maximal aerobic capacity during a running VO2max test in the warm-exercised or cold-exposed (with or without exercise) groups was about 130 mL O(2)/kg/min, significantly higher than the warm-acclimated controls at 113.5 mL O(2)/kg/min. Similarly, during an acute cold challenge (VO2summit), maximal aerobic capacity was higher in these three experimental groups at approximately 95 mL O(2)/kg/min compared with 80.4 mL O(2)/kg/min in warm-acclimated controls. Respiratory exchange ratio was significantly lower (0.89-0.68), whereas relative heart mass (0.52%-0.73%) and whole-body muscle mitochondrial volume density (2.59 to 3.04 cm(3)) were significantly higher following cold exposure. Chronic cold exposure was a stronger stimulus than endurance exercise training for tissue-specific adaptations. Although chronic cold exposure and endurance exercise are distinct challenges, physiological adaptations to each overlap such that the capacities for aerobic performance in response to both cold exposure and running are increased by either or both treatments.  相似文献   

14.
The marble notothen, Notothenia rossii, is widely distributed around the waters of sub-Antarctic islands in the Southern Ocean and is exposed to different temperatures that range from ?1.5 to 8 °C. This study investigates whether the different environmental conditions experienced by N. rossii at different latitudes in the Southern Ocean affect the levels of its blood serum antifreeze glycoprotein (AFGP). N. rossii specimens were collected from four localities, including the Ob’ Seamount in the Indian Ocean sector, and South Georgia Island, South Shetland Islands and Dallman Bay in the Atlantic Ocean sector. Serum AFGP activity was determined in terms of thermal hysteresis, i.e. the difference between the equilibrium melting and non-equilibrium freezing points (f.p.s.). Among the four populations, the Ob’ Seamount specimen had the lowest serum AFGP activity (0.44 °C) and concentration (4.88 mg/mL), and the highest non-equilibrium f.p. (?1.39 °C). These results are consistent with the warmer, ice-free waters around the Ob’ Seamount. The other three higher latitude populations have 2–3 times greater serum AFGP activity and concentration, and much lower non-equilibrium f.p.s. In contrast, the physiological profiles of serum AFGP size isoforms revealed that all N. rossii populations, including the Ob’ Seamount specimen, possess an extensive complements of AFGP proteins. Isoform variation was observed, especially in the large size isoforms (AFGPs 1–5), when compared to AFGP of the high Antarctic Dissostichus mawsoni. The lower levels of AFGP and the absence of some of the large isoforms are likely responsible for higher non-equilibrium f.p.s. of the Ob’ seamount specimen.  相似文献   

15.
Stout DG 《Plant physiology》1988,86(1):283-287
Stem and electrode electric impedance at 14 frequencies were monitored during cold acclimation of alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.). Cold acclimation significantly increased high frequency (e.g. 1.11 megahertz) resistance and reactance but not low frequency (49 hertz) resistance and reactance of both species. High frequency resistance of living stems was equivalent to the average resistance at all frequencies of dead stems and the resistance of dead stems (y) was related to stem water content (x):y = 9.28 − 4.11x + 0.47x2, R = 0.92. The low-high frequency (49 hertz/1.11 megahertz) resistance ratio decreased during cold acclimation. A time constant believed to be a function of membrane resistance and capacitance was not affected by cold acclimation.  相似文献   

16.

Background

As the oceans simultaneously warm, acidify and increase in P CO2, prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming.

Methodology/Principal Findings

We examined the interactive effects of near-future ocean warming and increased acidification/P CO2 on larval development in the tropical sea urchin Tripneustes gratilla. Larvae were reared in multifactorial experiments in flow-through conditions in all combinations of three temperature and three pH/P CO2 treatments. Experiments were placed in the setting of projected near future conditions for SE Australia, a global change hot spot. Increased acidity/P CO2 and decreased carbonate mineral saturation significantly reduced larval growth resulting in decreased skeletal length. Increased temperature (+3°C) stimulated growth, producing significantly bigger larvae across all pH/P CO2 treatments up to a thermal threshold (+6°C). Increased acidity (-0.3-0.5 pH units) and hypercapnia significantly reduced larval calcification. A +3°C warming diminished the negative effects of acidification and hypercapnia on larval growth.

Conclusions and Significance

This study of the effects of ocean warming and CO2 driven acidification on development and calcification of marine invertebrate larvae reared in experimental conditions from the outset of development (fertilization) shows the positive and negative effects of these stressors. In simultaneous exposure to stressors the dwarfing effects of acidification were dominant. Reduction in size of sea urchin larvae in a high P CO2 ocean would likely impair their performance with negative consequent effects for benthic adult populations.  相似文献   

17.
Mitochondrial volume density (Vv(mt,f)), cristae surface density (Sv(im,mt)), cristae surface area (Sv(im,f)) and citrate synthase (CS) activity were analysed as indicators of thermal acclimation in foot muscle of the limpet, Nacella concinna, and the clam, Laternula elliptica, collected from 4 locations within the Southern Ocean, South Georgia (54°S, N. concinna only), Signy (60°S), Jubany (L. elliptica only ? 62°S) and Rothera (67°S). Animals were acclimated to 0.0 °C whilst a sub-set of N. concinna (South Georgia, Signy and Rothera) and L. elliptica (Rothera) were acclimated to 3.0 °C. At 0.0 °C N. concinna had higher Vv(mt,f), Sv(im,mt), Sv(im,f) and muscle fibre specific CS activity than L. elliptica which correlated with the more active life style of N. concinna. However, mitochondrial density was very low, 1–2% in both species, suggesting that low temperature compensation of mitochondrial density is not a universal evolutionary response of Antarctic marine ectotherms. Both Sv(im,mt) and Sv(im,f) were reduced by warm acclimation of N. concinna. South Georgia N. concinna maintained muscle fibre specific CS activity after acclimation, in contrast to N. concinna from Rothera and Signy and L. elliptica from Rothera, indicating that they have the physiological plasticity to respond to their warmer, more variable thermal environment.  相似文献   

18.
Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.  相似文献   

19.
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.  相似文献   

20.
Threespine sticklebacks (Gasterosteus aculeatus) that had been reared in the laboratory under natural photoperiods were acclimated to 23 degrees and 8 degrees C in late spring under increasing day lengths and again in late fall under decreasing day lengths. The parents of these fish were from the anadromous Isle Verte population. In the spring, cold- and warm-acclimated fish grew at the same rates and attained similar condition factors (mass L(-3)), although food intake was considerably higher at 23 degrees C. As both groups had similar increases in mass and condition, the higher axial muscle activities of citrate synthase and phosphofructokinase (measured at 20 degrees C) after cold acclimation were likely a direct response to temperature. Multiple regression analysis showed that axial muscle levels of cytochrome C oxidase and citrate synthase were correlated with the burst swimming speeds of the spring sticklebacks, while growth rates were positively correlated with lactate dehydrogenase levels in pectoral and axial muscles and creatine kinase levels in the axial muscle. In the fall, the fish in both acclimation groups grew little, although they fed at similar rates as in the spring experiment. Overall, the sticklebacks showed lower burst swimming speeds in the fall. In both spring and fall, the burst speeds of cold- and warm-acclimated sticklebacks only differed at warm temperatures. In the spring experiment, the cold-acclimated fish swam faster, whereas in the fall experiment the warm-acclimated fish swam faster despite their lower percentage of axial muscle. Swimming speeds were measured both at a fish's acclimation temperature and after 12 h at the other temperature. Cold-acclimated sticklebacks seem to have more facility in rapidly adjusting to warm temperatures when they have experienced increasing rather than decreasing day lengths, perhaps as a result of the requirements of the spring migration to the intertidal breeding grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号