首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
《生命科学研究》2015,(5):422-425
24只雄性SD(Sprague dawley)大鼠在低盐饮食的基础上,随机分为3组:对照组、模型组、治疗组。模型组给予环孢素A(Cyclosporin A,Cs A)30 mg/kg/d腹腔注射共28 d建立慢性肾毒性大鼠模型;治疗组在给予等量Cs A的基础上腹腔注射给予重组可溶性Klotho蛋白(0.02 mg/kg/d腹腔注射,隔日一次)。28 d后处死大鼠,收集肾组织标本;行Masson染色观察肾脏病理损害;TUNEL(Td T-mediated d UTP nick end labeling)染色观察细胞凋亡情况;Western-blot检测肾组织内质网应激标志物兔抗葡萄糖调节蛋白78(glucose regulated protein78,GRP78)及CCAAT/增强子结合蛋白同源蛋白(pro-apoptotic protein CCAAT/enhancer binding protein homologous protein,CHOP)的表达情况。分析发现,模型组大鼠肾脏病理损害明显加重,肾小管上皮细胞大量凋亡,GRP78及CHOP表达显著上调,而Klotho治疗组大鼠肾脏病理损害明显减轻,细胞凋亡减少,GRP78及CHOP的表达明显降低。表明Klotho蛋白可通过抑制内质网应激诱导的凋亡缓解Cs A慢性肾毒性的发生。  相似文献   

2.
环孢素致慢性肾毒性研究进展   总被引:3,自引:0,他引:3  
环孢霉素A一种真菌代谢产物,由11个氨基酸组成,能够有效减轻排斥反应,延长移植物半衰期,是临床应用的主要免疫抑制剂,被广泛应用于器官移植及一些免疫性疾病,明显改善了器官和骨髓移植者的生存率,然而也伴随着严重的副作用,慢性肾毒性尤为突出,发生率高(30%~74%),对肾脏而言,将损害移植肾脏本身.慢性肾毒性的最终表现为肾小管萎缩,肾小球硬化,间质纤维化等,但其分子机制目前仍不清楚.  相似文献   

3.
本文旨在研究姜黄素(CRC)对双酚A(BPA)诱导的小鼠卵巢氧化损伤的保护作用。将28日龄雌性小鼠分为对照组、姜黄素组、双酚A组和双酚A加姜黄素组,连续灌胃6周。收集卵巢,通过活性氧(ROS)水平的检测、卵巢闭锁卵泡的观察以及3种关键抗氧化酶表达和活性的测定,研究姜黄素对双酚A诱发的卵巢氧化损伤的保护作用及机制。结果显示,与对照组相比,双酚A暴露后明显增加了卵巢的活性氧水平,造成氧化应激,提高了卵巢中有腔卵泡闭锁比例。与双酚A组相比,双酚A和姜黄素共同处理组降低了卵巢的活性氧水平和卵巢中有腔卵泡闭锁比例。双酚A暴露降低了卵巢超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)以及过氧化氢酶(CAT)的表达和活性,姜黄素逆转了双酚A诱导的3种抗氧化酶表达和活性的下降。结果表明,姜黄素可逆转双酚A通过氧化应激造成的卵巢损伤。  相似文献   

4.
为探讨双酚A(BPA)对两栖动物生精细胞凋亡及相关蛋白Bax和Bcl-2表达的影响.将雄性中国林蛙(Rana chensinensis)分别暴露于10-7、10-6、10-5 mol/L BPA水体中持续3 d、5 d、7 d,取其精巢组织.用原位末端转移酶法(TUNEL)和甲基绿-派诺宁法(Methyl Green-Pyronine)检测生精细胞凋亡,用免疫组织化学方法检测生精细胞的Bax和Bcl-2表达.结果显示,各BPA处理组中国林蛙生精细胞凋亡指数(Apoptotic index,AI)均显著高于对照组,10-6 mol/L与10-7 mol/L BPA处理组生精细胞的AI差异不显著,10-5 mol/L BPA处理组生精细胞的AI与前两组相比显著增高;在同一BPA浓度处理组,生精细胞AI随处理时间的延长而增高.与对照组相比,各BPA处理组Bax表达上调,Bcl-2表达下调,差异均显著;生精细胞AI与Bax/Bcl-2表达呈正相关.这些结果提示,BPA可导致中国林蛙的生精细胞凋亡,而生精细胞凋亡的发生与Bax/Bcl-2表达比值的变化密切相关.  相似文献   

5.
目的 本研究旨在评估聚苯乙烯纳米塑料(polystyrene nanoplastics, PSNPs)暴露对小鼠角膜多层组织的急性毒性效应,重点探讨氧化应激和线粒体依赖性凋亡的机制。方法 采用滴眼暴露法,将小鼠角膜暴露于200μg/m L浓度的PSNPs悬液,持续8 d。通过TUNEL染色、透射电子显微镜(TEM)观察、Western blot检测及生化指标检测分析,评估PSNPs对角膜组织的毒性效应及其机制。结果 PSNPs暴露显著增加角膜组织中的丙二醛(MDA)水平,表明氧化应激加剧;总抗氧化能力(T-AOC)显著下降,提示抗氧化防御功能受损。TUNEL染色结果显示,角膜各层组织细胞的凋亡比例显著增加,尤其在上皮层。透射电子显微镜观察到,暴露组角膜上皮层、基质层和内皮层均存在不同程度的线粒体损伤,表现为线粒体肿胀、嵴结构破坏等典型病变。Western blot分析发现,PSNPs暴露后促炎因子TNF-α的表达略有上调,但未达显著差异。结论 PSNPs暴露通过引发氧化应激,导致角膜各层组织的线粒体损伤和细胞凋亡,表现出层次性毒性特征。该研究揭示了PSNPs对角膜的急性毒性机制,特别是氧化应激驱动的线粒体依赖性凋亡通路,为微塑料污染的眼部健康风险评估提供了新的数据支持。  相似文献   

6.
目的:探讨Sestrin2蛋白对热暴露肺上皮细胞凋亡的干预作用及其作用机制。方法:体外培养的Beas-2B细胞分为对照组(37℃)和热暴露组(39℃、40℃和41℃),在上述温度中暴露不同时间(0、3、6和12 h),胰酶消化后收集细胞,分别通过Western blot、荧光分光光度计、流式细胞仪等方法检测细胞中的Sestrin2、超氧化物歧化酶(SOD)、活性氧自由基(ROS)表达水平,细胞线粒体膜电位及细胞凋亡率。基因序列克隆入高表达质粒pcDNA 3.1+中,采用Lipfectamine 2000方法转染Beas-2B细胞,构建Sestrin2和SOD高表达细胞,观察细胞线粒体膜电位及细胞凋亡等指标的变化。结果:随着暴露温度的升高,与对照组相比,热暴露组细胞Sestrin2蛋白表达水平下降。在41℃热暴露Beas-2B细胞,不同时间点ROS水平显著上升,线粒体膜电位显著下降,细胞凋亡率增加。Sestrin2和SOD高表达细胞,在41℃暴露条件下,与对照组比较,ROS表达水平显著降低,线粒体膜电位下降幅度减小,热暴露导致细胞凋亡率降低。结论: Sestrin2能够通过线粒体膜电位和SOD缓解热暴露引起肺上皮细胞的凋亡,对Beas-2B细胞具有保护作用。  相似文献   

7.
目的:研究内分泌干扰物双酚芴对MCF-7乳腺癌细胞的毒性效应.方法:用不同浓度(10-5~10-12 mol/L)的双酚芴分别暴露MCF-7细胞,通过细胞增殖实验(MTS法)研究双酚芴对细胞存活率的影响;采用DCFH-DA荧光染色法测定细胞活性氧水平;利用人类全基因组表达谱芯片分析双酚芴对细胞转录组的影响.结果:细胞增...  相似文献   

8.
研究了微囊藻细胞抽提物亚慢性暴露对小鼠肝脏抗氧化系统的影响.采用腹腔注射进行连续染毒28d,染毒组剂量为3.3μg micmcystins/kg体重.结果显示,超氧化物歧化酶、过氧化氧酶、谷胱甘肽过氧化物酶在第4周时发生显著性升高,提示微囊藻细胞抽提物激活了小鼠肝脏抗氧化系统.谷胱甘肽-S-转移酶和对照组相比也显著提高,表明谷胱甘肽-S-转移酶作为解毒Ⅰ相酶加快了对肝脏微囊藻毒素的清除.脂质过氧化产物丙二醛也显著升高,说明抗氧化系统未能清除微囊藻细胞抽提物对小鼠肝脏的氧化损伤,导致了氧化应激的产生.结果表明低剂量微囊藻细胞抽提物长时间暴露能够导致小鼠肝脏氧化损伤.  相似文献   

9.
目的观察环境雌激素双酚A(BPA)对雄性小鼠生殖功能的损害作用。方法采用小鼠腹腔注射双酚A,染毒成年小鼠5d,饲养30d。观察小鼠精子畸形率、测定血清中一氧化氮(NO)的含量、一氧化氮合酶(NOS)的活性。以雌二醇(E2)作为阳性对照物。结果BPA染毒组小鼠的精子畸形率较对照组高,睾丸和附睾的脏器系数均低于对照组,血清NO含量、NOS活性均高于对照组。结论一定剂量的BPA对小鼠的精子有致畸作用,并可使血清NO含量、NOS活性增高。  相似文献   

10.
纳米粒子(NPS)在工业和研究中的使用急剧增加,因而这种材料面临一个其潜在毒性的问题。不幸的是,对纳米颗粒与纳米/生物界面可能发生的相互作用没有足够的了解。广大科技工作者正在积极寻求日益关注的纳米技术对人类的影响答案。我们将从NPS在生物媒体中的浓度,尺寸大小,电荷,和配位体的稳定性方面来了解纳米粒子的性质和他们在生物环境中对细胞毒所起的作用;并初步探讨已知的机制,量子点可以破坏细胞,包括氧化应激引起的活性氧(ROS)。微小浓度量子点足以造成长期持久的,甚至是跨代的影响。本文讨论了从纳摩尔到皮摩尔浓度的诱导细胞损伤的量子点(QDS)的浓度,这意味着含镉量子点可以发挥表观遗传毒性,纳米基因毒性,重金属基因的毒性。在此为评估包括量子点的在内的纳米毒性的的纳米材料,我们采用量子点作为一个例证,来阐述以科学为基础的发展到纳米毒理学的相关的问题。  相似文献   

11.
    
Doxorubicin (DOX) exerts toxic effects in several organs particularly kidney. The present study aimed to assess the protective effect of proanthocyanidins (PAs) against DOX‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg, i.v.) significantly increased kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha levels, and kidney contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3 activity with significant reduction in final body weight, serum albumin, kidney contents of reduced glutathione (GSH), and superoxide dismutase activity as compared with control group. In contrast, pretreatment with PAs (200 mg/kg, p.o.) for 14 days before DOX and for 7 days after DOX ameliorated kidney function and oxidative stress parameters. Histopathological evidence confirmed the protective effects of PAs from the tissue damage induced by DOX. In conclusion, PAs have a multi‐nephroprotective effect that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

12.
    
Cisplatin‐induced nephrotoxicity persists as a clinical problem despite several supportive measures to alleviate renal damage. Daidzein (DZ), a dietary isoflavone having antioxidant and anti‐inflammatory activity, is investigated in this study for protective effects against cisplatin‐induced renal injury in rats. DZ (25, 50, or 100 mg/kg; intraperitoneally; 10 days) was administered along with Cisplatin, single dose, on the 7th day of the experiment. On the 11th day, the rats were euthanized, and different samples were collected for analysis. Biochemical, histopathological, and molecular parameters were assessed to evaluate the effect of daidzein. Cisplatin injection resulted in renal dysfunction, lipid peroxidation that led to consumption of antioxidants, exaggerated apoptosis, and inflammation. These changes were associated with increase in the signaling proteins. DZ attenuated the toxic effects of cisplatin on the kidney at 100 mg/kg dose. The study concludes with the finding that daidzein imparts protection against the nephrotoxic effect of Cisplatin and can be considered as a novel, potential therapy.  相似文献   

13.
    
Oxidative stress induced by long‐term cyclosporine A (CsA) administration is a major cause of chronic nephrotoxicity, which is characterized by tubular atrophy, tubular cell apoptosis, and interstitial fibrosis in the progression of organ transplantation. Although hydrogen‐rich water (HRW) has been used to prevent various oxidative stress‐related diseases, its underlying mechanisms remain unclear. This study investigated the effects of HRW on CsA‐induced nephrotoxicity and its potential mechanisms. After administration of CsA (25 mg/kg/day), rats were treated with or without HRW (12 mL/kg) for 4 weeks. Renal function and vascular activity were investigated. Histological changes in kidney tissues were analyzed using Masson's trichrome and terminal deoxynucleotidyl transferase dUTP nick‐end labeling stains. Oxidative stress markers and the activation of the Kelch‐like ECH‐associated protein 1 (Keap1)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signaling pathway were also measured. We found that CsA increased the levels of reactive oxygen species (ROS) and malonaldehyde (MDA), but it reduced glutathione (GSH) and superoxide dismutase (SOD) levels. Such alterations induced vascular dysfunction, tubular atrophy, interstitial fibrosis, and tubular apoptosis. This was evident secondary to an increase in urinary protein, serum creatinine, and blood urea nitrogen, ultimately leading to renal dysfunction. Conversely, HRW decreased levels of ROS and MDA while increasing the activity of GSH and SOD. This was accompanied by an improvement in vascular and renal function. Moreover, HRW significantly decreased the level of Keap1 and increased the expression of Nrf2, NADPH dehydrogenase quinone 1, and heme oxygenase 1. In conclusion, HRW restored the balance of redox status, suppressed oxidative stress damage, and improved kidney function induced by CsA via activation of the Keap1/Nrf2 signaling pathway.  相似文献   

14.
    
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

15.
    
Due to the association of oxidative stress and telomere shortening, it was aimed in the present study to investigate the possibility whether cyclosporine‐A exerts its nephrotoxic side effects via induction of oxidative stress‐induced renal telomere shortening and senescent phenotype in renal tissues of rats. Renal oxidative stress markers, 8‐hydroxydeoxyguanosine, malondialdehyde, and protein carbonyl groups were measured by standard methods. Telomere length and telomerase activity were also evaluated in kidney tissue samples. Results showed that cyclosporine‐A treatment significantly (< 0.05) enhanced renal malondialdehyde, 8‐hydroxydeoxyguanosine, and protein carbonyl groups levels, decreased renal telomere length, and deteriorated renal function compared with the controls. Renal telomerase activity was not affected by cyclosporine‐A. Renal telomere length could be considered as an important parameter of both oxidative stress and kidney function. Telomere shortening and accelerated kidney aging may be caused by cyclosporine‐induced oxidative stress, indicating the potential mechanism of cyclosporine‐induced nephrotoxicity.  相似文献   

16.
    
The present study investigated the protective effects of kolaviron, a biflavonoid from the seed of Garcinia kola, and vitamin E on ethylene glycol monoethyl ether (EGEE)‐induced haematotoxicity and renal apoptosis in male rats. EGEE was administered at a dose of 200 mg kg?1 alone or simultaneously administered with kolaviron (100 and 200 mg kg?1) and vitamin E (50 mg kg?1) for 14 days. Results of haematological examination showed that white blood cells, platelets, neutrophils and mean corpuscular haemoglobin concentration were significantly lower, whereas lymphocytes were increased in EGEE‐exposed rats compared with those in the control. Administration of EGEE caused a significant decrease in the superoxide dismutase and catalase activities as well as in the glutathione level but significantly increased glutathione Stransferase activity and levels of hydrogen peroxide and lipid peroxidation in kidneys of rats compared with those in the control. Also, EGEE‐treated rats showed significant elevation in the serum urea and creatinine with marked increase in the frequency of terminal deoxynucleotidyl transferase‐mediated dUTP nick end labelling assay‐positive apoptotic cells in the tubular epithelial cells in comparison with the control. Co‐administration with kolaviron or vitamin E exhibited chemoprotective effects against EGEE‐mediated haematotoxicity, augmented renal antioxidant status and prevented the induction of renal apoptosis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
    
Polymyxin B (PMB) is a polypeptide antibiotic widely used in treating multidrug-resistant Gram-negative bacteria. However, nephrotoxicity is a serious adverse effect that limits its clinical use. Therefore, clarification of the molecular mechanism of PMB-induced renal injury is essential. Our study aimed to explore possible mechanisms of PMB-induced nephrotoxicity in vivo and in vitro. Mice were treated with PMB to construct the kidney injury model. The antioxidant capacity was assessed by measuring the superoxide dismutase (SOD) and catalase (CAT) activities and the glutathione (GSH) and malondialdehyde (MDA) contents. The pathway of the nuclear factor erythroid 2-related factor 2/NADH quinone oxidoreductase 1 (Nrf2/NQO1) was examined after PMB treatment in NRK-52E cells and mice. Finally, the expressions of genes and proteins (Bax, Bcl-2, Caspase-3, Caspase-9) related to apoptosis were evaluated through quantitative polymerase chain reaction and western blot assay. The study verified PMB-induced nephrotoxicity in mice and NRK-52E cells in a dose- and time-dependent manner. PMB treatment significantly decreased the expression of Nrf2 and its downstream target gene NQO1 and increased the apoptosis-related proteins expression. In summary, our results suggested that PMB-induced oxidative stress damage by inhibiting the Nrf2/NQO1 pathway and promoting apoptosis in kidney tissues.  相似文献   

18.
    
The use of cyclosporine A (CsA) as an immunosuppressive agent is often limited owing to its hepatotoxic and nephrotoxic properties. The present study was designed to evaluate the protective effect of metformin and silymarin in a rat model of CsA induced hepatorenal toxicity. The study included seven groups of Wistar albino rats (n = 6 per group): normal control, experimental control (CsA alone, 25 mg/kg), CsA + metformin (50 and 500 mg/kg), CsA + silymarin (50 and 200 mg/kg) and CsA + vitamin E (100 mg/kg). All the drugs were given daily for a period of 21 days by oral gavage and their effect was evaluated on serum levels of organ function markers (serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, bilirubin, urea/blood urea nitrogen, creatinine), markers of oxidative stress (thiobarbituric acid reactive substances, glutathione, superoxide dismutase), inflammation (nitrite, myeloperoxidase, tumour necrosis factor‐alpha, prostaglandin E2), apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labelling positivity) in addition to tissue histology, cyclooxygenase (COX)‐2 and inducible nitric oxide synthase (iNOS) immunoreactivity. Administration of metformin and silymarin along with CsA ameliorated functional damage to liver and kidneys in a dose‐dependent manner. Significant and comparable improvement in the tissue levels of oxidative stress, inflammation, apoptotic markers was also observed following treatment with both the test drugs. Normalization of histology scores, as well as COX‐2 and iNOS immunoreactivity scores, further strengthened these findings. The hepatoprotective and nephroprotective effects of metformin and silymarin were comparable and matched with that of reference drug, vitamin E. The findings of the present study suggest that both metformin and silymarin have a potential for clinical use in patients receiving long‐term CsA treatment to maintain their liver and kidney functions.  相似文献   

19.
Wei T  Sun H  Zhao X  Hou J  Hou A  Zhao Q  Xin W 《Life sciences》2002,70(16):1889-1899
Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号