首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
用形成包含体(OCC~+)并能利用人工合成启动序列和多角体XIV启动子表达外源基因的转移载体质粒pSXIVVI~+X3,将乙型肝炎病毒表面抗原(HBsAg)基因和多角体基因同时插入无包含体的粉纹夜蛾核型多角体病毒TnNPV-SVI-G基因组中,得到表达HBsAg基因又形成包含体(多角体)的重组毒侏TnNPV-HBs85-OCC~+。与利用野生型多角体启动子表达HBsAg基因的无包含体毒株TnNPV-HBsD4不同,TnNPV-HBs85-OCC~+由于具包含体,能以口服方式大规模感染粉纹夜蛾(Trichoplusia ni)幼虫,且HBsAg基因在草地夜蛾(Spodoptera frugiperda)离体细胞中的表达量要比前者高约37%,在虫体中的表达则更高。  相似文献   

4.
5.
6.

Background

Liver cirrhosis is a potentially life-threatening disease caused by progressive displacement of functional hepatocytes by fibrous tissue. The underlying fibrosis is often driven by chronic infection with hepatitis B virus (HBV). Matrix metalloproteinases including MMP-8 are crucial for excess collagen degradation. In a rat model of liver cirrhosis, MMP-8 delivery by an adenovirus (Ad) vector achieved significant amelioration of fibrosis but application of Ad vectors in humans is subject to various issues, including a lack of intrinsic liver specificity.

Methods

HBV is highly liver-specific and its principal suitability as liver-specific gene transfer vector is established. HBV vectors have a limited insertion capacity and are replication-defective. Conversely, in an HBV infected cell vector replication may be rescued in trans by the resident virus, allowing conditional vector amplification and spreading. Capitalizing on a resident pathogen to help in its elimination and/or in treating its pathogenic consequences would provide a novel strategy. However, resident HBV may also reduce susceptibility to HBV vector superinfection. Thus a size-compatible truncated MMP-8 (tMMP8) gene was cloned into an HBV vector which was then used to generate a chimeric Ad-HBV shuttle vector that is not subject to superinfection exclusion. Rats with thioacetamide-induced liver cirrhosis were injected with the chimera to evaluate therapeutic efficacy.

Results

Our data demonstrate that infectious HBV vector particles can be obtained via trans-complementation by wild-type virus, and that the tMMP8 HBV vector can efficiently be shuttled by an Ad vector into cirrhotic rat livers. There it exerted a comparable beneficial effect on fibrosis and hepatocyte proliferation markers as a conventional full-length MMP-8Ad vector.

Conclusions

Though the rat cirrhosis model does not allow assessing in vivo HBV vector amplification these results advocate the further development of Ad-HBV vectors for liver-specific gene therapy, including and perhaps particularly for HBV-related disease.  相似文献   

7.
目的:利用马铃薯X病毒(PVX)表达载体,在本生烟草中表达乙肝病毒表面抗原(HBsAg),为生产植物疫苗提供一条快速高效的新途径.方法:将HBsAg基因克隆进PVX表达载体,电转化农杆菌,侵染本生烟的叶片、茎和根.结果与结论:采用ELISA检测重组HBsAg的表达水平,SDS-PAGE确认其大小,Western印迹分析表明重组蛋白可与鼠抗HBsAg单克隆抗体发生特异性反应.HBsAg蛋白表达量在幼小叶片中远高于已伸展的叶片,在叶片中的表达量远高于茎根;表达量会随侵染后时间发生一定的变化,但因植株而异;重组蛋白在可溶性蛋白中的含量最高可达796.81 ng/mg.  相似文献   

8.
Four pigtailed macaques were inoculated with an infectious, apathogenic human immunodeficiency virus type 2 (HIV-2) molecular clone (HIV-2KR) and subsequently challenged with a highly pathogenic strain, HIV-2287, together with two naive control animals. After challenge, two animals inoculated with a high dose of the immunizing strain were protected from CD4 decline and immunodeficiency. To examine the role of genetic heterogeneity in protection, fragments of the env gene were amplified from peripheral blood mononuclear cell DNA and plasma RNA of challenged animals by PCR, examined by using a heteroduplex tracking assay (HTA), and sequenced. By HTA, variation was detected principally within the V1 and V2 regions of envelope. Extent of variation in viral DNA clones as assessed by HTA correlated with inoculum size, as did the degree of variation in sequences of clones derived from viral DNA. Conversely, a rapid reduction in the number of plasma viral RNA variants was noted by HTA at 8 weeks postinfection in protected animals; this reduction was not present in naive or unprotected macaques. Sequences derived from plasma viral RNA were found to be more closely related than corresponding viral DNA sequences, and protection correlated with a significant reduction in variation in plasma RNA sequences in animals given the identical inocula of HIV-2287. Nonsynonymous mutations were significantly less prevalent in the protected animals. An additional potential glycosylation site was predicted to be present in the V2 region in all but one clone, and amino acid signatures related to protection were identified in viral DNA and RNA clones within both the V1 and V2 regions. Examination of the role of viral variation in this HIV-2 live-virus vaccine model may provide valuable insights into immunopathogenesis.  相似文献   

9.
Previously we designed novel pseudotyped high-titer replication defective human immunodeficiency virus type 1 (HIV-1) vectors to deliver genes into nondividing cells (J. Reiser, G. Harmison, S. Kluepfel-Stahl, R. O. Brady, S. Karlsson, and M. Schubert, Proc. Natl. Acad. Sci. USA 93:15266–15271, 1996). Since then we have made several improvements with respect to the safety, flexibility, and efficiency of the vector system. A three-plasmid expression system is used to generate pseudotyped HIV-1 particles by transient transfection of human embryonic kidney 293T cells with a defective packaging construct, a plasmid coding for a heterologous envelope (Env) protein, and a vector construct harboring a reporter gene such as neo, ShlacZ (encoding a phleomycin resistance/β-galactosidase fusion protein), HSA (encoding mouse heat-stable antigen), or EGFP (encoding enhanced green fluorescent protein). The packaging constructs lack functional Vif, Vpr, and Vpu proteins and/or a large portion of the Env coding region as well as the 5′ and 3′ long terminal repeats, the Nef function, and the presumed packaging signal. Using G418 selection, we routinely obtained vector particles pseudotyped with the vesicular stomatitis virus G glycoprotein (VSV-G) with titers of up to 8 × 107 CFU/μg of p24, provided that a functional Tat coding region was present in the vector. Vector constructs lacking a functional Tat protein yielded titers of around 4 × 106 to 8 × 106 CFU/μg of p24. Packaging constructs with a mutation within the integrase (IN) core domain profoundly affected colony formation and expression of the reporter genes, indicating that a functional IN protein is required for efficient transduction. We explored the abilities of other Env proteins to allow formation of pseudotyped HIV-1 particles. The rabies virus and Mokola virus G proteins yielded high-titer infectious pseudotypes, while the human foamy virus Env protein did not. Using the improved vector system, we successfully transduced contact-inhibited primary human skin fibroblasts and postmitotic rat cerebellar neurons and cardiac myocytes, a process not affected by the lack of the accessory proteins.  相似文献   

10.
We investigated the inhibitory effect of an oral administration of a hop water extract (HWE) on the development of dermatitis by using NC/Nga atopic dermatitis model mice. The induction of allergic dermatitis was conducted by tape-stripping and topical application of a mite antigen (Dermatophagoides farinae) on to the ear once a week for 10 weeks. HWE was orally administered at a dose of 100 or 500 mg/kg. The total immunoglobulin E (IgE) concentration in serum and the ear thickness were periodically examined. Finally, the antigen-specific IgE level in the serum and the production of interleukin (IL)-4, IL-12 and interferon (IFN)-γ from splenocytes and cervical lymph node cells were measured. The oral administration of HWE significantly inhibited the increase of total IgE production and ear swelling throughout the experimental period. The production of IL-12 was significantly lower in the HWE administered group than in the control group. The results suggest that the intake of HWE may be effective in preventing and alleviating the development of atopic dermatitis-like skin disease.  相似文献   

11.
12.
13.
The hepatitis B virus (HBV) core (HBc) antigen (HBcAg) is a highly immunogenic subviral particle. Studies with mice have shown that HBcAg can bind and activate B cells in a T-cell-independent fashion. By using a human peripheral blood leukocyte (hu-PBL)-Nod/LtSz-Prkdc(scid)/Prkdc(scid) (NOD/SCID) mouse model, we show here that HBcAg also activates human B cells in vivo in a T-cell-independent way. HBcAg was capable of inducing the secretion of HBcAg-binding human immunoglobulin M (IgM) in naive human B cells derived from adult human and neonatal (cord blood) donors when these hu-PBL were transferred directly into the spleens of optimally conditioned NOD/SCID mice. No such responses were found in chimeric mice that were given hu-PBL plus HBV e antigen or hu-PBL plus phosphate-buffered saline. In addition, HBcAg activated purified human B cells to produce anti-HBc IgM in the chimeric mice, thus providing evidence that HBcAg behaves as a T-cell-independent antigen in humans. However, HBcAg-activated hu-PBL from naive donors were unable to switch from IgM to IgG production, even after a booster dose of HBcAg. Production of HBcAg-specific IgG could only be induced when hu-PBL from subjects who had recovered from or had an ongoing chronic HBV infection were transferred into NOD/SCID mice. Our data suggest that humans also have a population of naive B cells that can bind HBcAg and is subsequently activated to produce HBcAg-binding IgM.  相似文献   

14.
Hepatitis B virus (HBV) persistent infection is associated with ineffective immune response for the clearance of virus. Immunomodulators represent an important class of therapeutics, which potentially could be beneficial for the treatment of HBV infection. The particulate yeast-derived glucan (PYDG) has been shown to enhance the innate and adaptive immune responses. We therefore, assessed the efficacy of PYDG in enhancing HBV specific immune responses by employing the hydrodynamic injection-based (HDI) HBV transfection mouse model. Mice were intragatric administered PYDG daily for 9 weeks post pAAV/HBV1.2 hydrodynamic injection. PYDG treatment significantly promoted HBV DNA clearance and production of HBsAb compared to control mice. PYDG treatment resulted in recruitment of macrophages, dendritic cells (DCs) and effector T cells to the liver microenvironment, accompanied by a significantly augmented DCs maturation and HBV-specific IFN-γ and TNF-α production by T cell. In addition, enhanced production of Th1 cytokines in liver tissue interstitial fluid (TIF) was associated with PYDG administration. Live imaging showed the accumulation of PYDG in the mouse liver. Our results demonstrate that PYDG treatment significantly enhances HBV-specific Th1 immune responses, accompanied by clearance of HBV DNA, and therefore holds promise for further development of therapeutics against chronic hepatitis B.  相似文献   

15.
HBV具备改造作为肝靶向性基因治疗载体的基本条件---天然嗜肝特异性,能够在肝细胞内持续复制、反复感染,病毒本身对细胞没有明显的细胞毒性;能够携带外源基因并被包装成病毒颗粒;能够介导外源基因的转移和表达。但由于基因结构复杂,目前改造的HBV载体均存在载容量小、复制包装效率低及安全性差等缺点。就近年相关研究进展进行综述。  相似文献   

16.
目的:构建突变型核心抗原核酸疫苗,观察该核酸疫苗在体外蛋白的表达.方法:采用基因工程定点突变技术,构建5种突变型核酸疫苗,分别去除乙肝病毒核心抗原N端的第1、2位氨基酸,命名为M12,去除3、4位氨基酸命名为M34以及去除5、6位的氨基酸命名为M56,用上述构建的核酸疫苗与野生型HBc核酸疫苗(pJW4303/Hc)及空载体质粒pJW4303分别用脂质体转染293T细胞,应用蛋白印迹法检测核心蛋白的表达.结果:经过pstl和BgI双酶切和测序鉴定结果突变型核心抗原核酸疫苗构建成功.在去除2个氨基酸的核酸疫苗结果中显示:野生型pJW4303/HBe、M12、及M56体外转染293T细胞后,在细胞上清和裂解中能很好的表达,而M34上清未见表达,仅裂解中可见极少量疑似表达条带;在原有基础上分别去除第3位和第4住氨基酸,命名为M3和M4,结果显示M3上清未见表达,裂解液中可见少量表达,而M4在上清和裂解中均可见明显的表达.结论:去除核心抗原N端第3位的氨基酸(M3)可以明显影响核心抗原的表达,HBcAg氨基端第3位氨基酸对蛋白的表达可能起到重要的作用.  相似文献   

17.
Herpes simplex virus serotype 1 (HSV-1) expresses an immediate-early protein, ICP47, that effectively blocks the major histocompatibility complex class I antigen presentation pathway. HSV-1 ICP47 (ICP47-1) binds with high affinity to the human transporter associated with antigen presentation (TAP) and blocks the binding of antigenic peptides. HSV type 2 (HSV-2) ICP47 (ICP47-2) has only 42% amino acid sequence identity with ICP47-1. Here, we compared the levels of inhibition of human and murine TAP, expressed in insect cell microsomes, by ICP47-1 and ICP47-2. Both proteins inhibited human TAP at similar concentrations, and the KD for ICP47-2 binding to human TAP was 4.8 × 10−8 M, virtually identical to that measured for ICP47-1 (5.2 × 10−8 M). There was some inhibition of murine TAP by both ICP47-2 and ICP47-1, but this inhibition was incomplete and only at ICP47 concentrations 50 to 100 times that required to inhibit human TAP. Lack of inhibition of murine TAP by ICP47-1 and ICP47-2 could be explained by an inability of both proteins to bind to murine TAP.Previously, we showed that herpes simplex virus serotype 1 (HSV-1) ICP47 (ICP47-1) caused major histocompatibility complex (MHC) class I proteins to be retained in the endoplasmic reticulum (ER) of cells and that antigen presentation to CD8+ T cells was inhibited after ICP47-1 was expressed in human fibroblasts (9). ICP47-1 blocked peptide transport across the ER membrane by TAP (2, 6), so that, without peptides, class I proteins were retained in the ER. By contrast, ICP47 did not detectably inhibit MHC class I antigen presentation in mouse cells (9) and inhibited murine TAP poorly (2, 6). ICP47-1 inhibited peptide binding to TAP without affecting the binding of ATP (1, 7) and bound with high affinity, and in a stable fashion, to human TAP (7). Peptides could competitively inhibit ICP47 binding to TAP, consistent with the hypothesis that ICP47-1 binds to a site which includes the peptide binding domain of TAP (7). Others have suggested that the present data do not exclude a distortion in TAP caused by the binding of ICP47 at a site distant from the peptide binding site (3). This seems improbable given our observations that ICP47 inhibits peptide binding and that peptides competitively inhibit ICP47 binding. In order for peptides to inhibit ICP47 binding and vice versa, one would have to invoke allosteric inhibition by both ICP47 and peptides, a highly unlikely prospect.The predicted amino acid sequence of HSV type 2 ICP47 (ICP47-2) was recently described (3), and it was of some interest that ICP47-1 and ICP47-2 share only 42% amino acid identity (see Fig. Fig.1A).1A). Most of the homology is near the N termini and in the central regions of the molecules. A peptide including residues 2 to 35 of ICP47-1 blocked human TAP in permeabilized cells (3). This observation was somewhat surprising given that this peptide did not include residues 33 to 51, a sequence that is most homologous between ICP47-1 and ICP47-2. Presumably, this conserved domain, and even the C-terminal third of the protein, is important in virus-infected cells for stability or for functions that are not apparent in this in vitro assay involving detergent-permeabilized cells.Open in a separate windowFIG. 1Comparison of ICP47-1 and ICP47-2 protein sequences and preparation of purified proteins. (A) The predicted amino acid sequences of ICP47-1 derived from HSV-1 strain 17 (6a) and of ICP47-2 derived from HSV-2 strain HG52 (3) are shown. The boldface, underlined letters denote identical amino acids, and the italicized letters denote conserved residues. (B) ICP47-1 and ICP47-2 were produced in Escherichia coli by expressing the proteins as GST fusion proteins by fusing the ICP47 coding sequences to GST sequences in plasmid pGEX-2T as described previously (7). Lysates from bacteria were incubated with glutathione-Sepharose and washed several times, and then ICP47-1 or ICP47-2 was eluted by incubation with thrombin, which cleaves between the GST and ICP47 sequences (7). The thrombin was inactivated with phenylmethylsulfonyl fluoride, and the ICP47 preparations were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Bradford protein analysis. The positions of GST-ICP47, GST, and ICP47 protein, as well as those of molecular weight markers 104, 80, 48, 34, 24, and 18 KDa in size, are indicated.Given the differences between the primary structures of ICP47-1 and ICP47-2, we were interested in whether ICP47-2 might inhibit the murine TAP. If this were the case, it would make possible animal studies of the effects of ICP47. Here, we have produced a recombinant form of ICP47-2 and compared the effects of ICP47-2 and ICP47-1 on human and murine TAP proteins expressed in insect cell microsomes. Like ICP47-1, ICP47-2 efficiently blocked human TAP but even at high concentrations did not effectively block murine TAP. Moreover, there was little or no significant binding of either protein to insect microsomes containing mouse TAP.The HSV-2 ICP47 gene was subcloned from plasmid pBB17, which contains a KpnI-HindIII 8,477-bp fragment derived from the genome of HSV-2 strain HG52 inserted into pUC19, by using PCR to amplify ICP47-2 coding sequences. One PCR primer hybridized with the 5′ end of the ICP47-2 coding sequences and extended 5′ to generate a new BglII site just upstream of the initiation codon. The second PCR primer hybridized with 3′ sequences of the ICP47-2 gene, then diverged to produce an EcoRI site just downstream of the translation termination codon. After PCR, the DNA fragment was digested with EcoRI and inserted into the HincII (blunt) and EcoRI sites of pUC19, producing plasmid pUC47-2, which was subjected to DNA sequencing. The ICP47-2 coding sequences were excised from pUC47-2 with BglII and EcoRI and inserted into the BamHI and EcoRI sites of pGEX-2T to generate a fusion protein with glutathione S-transferase (GST). The ICP47-GST fusion protein was expressed in bacteria and purified by using glutathione-Sepharose, and then the GST sequences were removed with thrombin as described previously for ICP47-1 (7). A comparison between the predicted amino acid sequences of ICP47-2 and ICP47-1 is shown in Fig. Fig.1,1, with a comparative gel (Fig. (Fig.1B)1B) showing the purified preparations of ICP47-1 and ICP47-2 from bacteria. Microsomes purified from Sf9 insect cells infected with baculoviruses expressing human TAP1 and TAP2 have been described previously (7, 8), as were microsomes from Drosophila cells expressing murine TAP1 and TAP2 (1). We previously estimated that approximately 2% of the protein associated with the insect microsomes was human TAP (7), and the microsomes containing mouse TAP possessed similar TAP activity (see below). Peptide translocation by these microsomes was measured by using a library of 125I-labelled peptides (5) that are glycosylated after transport into the ER. Radioactive peptides able to bind to concanavalin A were quantified as an indirect measure of peptide transport (6). Over a range of membranes from 2.5 to 20 μl, with protein concentrations of 10 to 12 mg/ml for human TAP microsomes and 5.0 to 7.0 mg/ml for mouse TAP microsomes, there was a linear increase in peptide transport (Fig. (Fig.2).2). Thus, peptides and ATP were not limiting. Peptide transport was specific because the transport observed with control membranes not containing TAP amounted to less than 1% of that observed when microsomes contained TAP. The levels of peptide transport associated with microsomes containing human or mouse TAP were also compared and standardized. Thus, in subsequent assays, 7.5 to 10 μl of microsomes exhibiting similar amounts of TAP activity were used. Open in a separate windowFIG. 2Peptide transport by insect microsomes containing human or murine TAP. Microsomes were derived from insect Sf9 cells coinfected with BacTAP1 and BacTAP2 (Human TAP) (7) or from Sf9 cells infected with a control baculovirus, BacgH (Human control). Alternatively, microsomes were derived from Drosophila cells induced to express mouse TAP (Murine TAP) (1) or from Drosophila cells which were not induced to express mouse TAP (Murine control). Various concentrations of each microsome preparation were incubated with 125I-labelled peptides and 5 mM ATP in a volume of 150 μl for 10 min at 23°C. The microsomes were washed, pelleted, and disrupted in detergent as described previously (7). Peptides able to bind to concanavalin A-Sepharose were eluted with alpha-methylmannoside and quantified (7).ICP47-2 inhibited peptide transport by human TAP, and the inhibition was similar to that of ICP47-1; the 50% inhibitory concentration (IC50) for ICP47-2 was 0.24 μM and for ICP47-1 was 0.27 μM (Fig. (Fig.3A).3A). In other experiments the IC50 values for ICP47-1 and ICP47-2 varied from 0.15 to 0.35 μM, and there were no experiments in which there was a significant difference in the abilities of the two proteins to inhibit human TAP. Moreover, the binding properties of ICP47-2 to human TAP were similar to those of ICP47-1. Binding experiments were performed as described previously for ICP47-1 (7) by using membranes containing human TAP and 125I-labelled ICP47-2. Specific binding of ICP47-2 was calculated by subtracting the binding to control microsomes derived from insect cells infected with a baculovirus expressing HSV gH (7). The binding of ICP47-2 was saturable, so that at a protein concentration of 1 μM approximately 16 ng of protein bound to human TAP (Fig. (Fig.4A).4A). In previous experiments with a similar preparation of insect microsomes containing human TAP, the binding of ICP47-1 also saturated at 15 to 16 ng (7). The ICP47-2 binding data were analyzed in a standard Scatchard plot, and the KD was calculated to be 4.8 × 10−8 M (Fig. (Fig.4B),4B), compared with 5.2 × 10−8 M for ICP47-1 (7). These values are greater than those of high-affinity peptides that bind to human TAP with affinities reaching 4 × 10−7 M, though the vast majority of peptides bind to TAP with much lower affinities (8). Open in a separate windowFIG. 3Inhibition of human and murine TAP-mediated peptide transport by ICP47-1 and ICP47-2. TAP assays were performed as described in the legend for Fig. Fig.22 by using insect microsomes containing human TAP (10 μl of membranes containing 12 mg of membrane protein per ml) (A) or murine TAP (7.5 μl of membranes containing 4.8 mg of membrane protein per ml but with equivalent levels of TAP activity compared with microsomes containing human TAP) (B) and various concentrations of ICP47-1 and ICP47-2. The results shown are combined from two separate experiments, each involving human and murine TAP.Open in a separate windowFIG. 4Binding of ICP47-2 to human TAP. (A) Microsomes (15 μl of membranes with a 7.5-mg/ml concentration of membrane protein) derived from Sf9 cells expressing TAP1 and TAP2 or expressing HSV-1 gH (control membranes not containing TAP) were incubated with various amounts of 125I-labelled ICP47-2 for 60 min at 4°C as described previously (7). Binding to control membranes was subtracted from binding to microsomes containing TAP at each point. (B) Scatchard analysis of the data in panel A. The KD for ICP47-2 binding to TAP was calculated to be 4.8 × 10−8 M.To determine whether ICP47-2 could inhibit the murine TAP, microsomes from insect cells expressing mouse TAP were incubated with various concentrations of ICP47-1 and ICP47-2 and TAP assays were performed. Inhibition of the mouse TAP was observed with both ICP47-1 and ICP47-2, but relatively high concentrations of both proteins were required (Fig. (Fig.3B).3B). The IC50 values for ICP47-1 and ICP47-2 in this experiment were 10.8 and 16.2 μM, respectively. However, we were unable to reduce TAP activity beyond approximately 40% with ICP47-1 or ICP47-2 concentrations reaching 30 μM. This was 100 times the concentration required to inhibit human TAP by 50%. We attempted to measure the specific binding of radiolabelled ICP47-1 and ICP47-2 to microsomes containing mouse TAP in experiments similar to those shown in Fig. Fig.4.4. However, there was little specific binding of ICP47-1 and ICP47-2, and it was difficult to measure binding at lower protein concentrations. We therefore measured binding at a single, higher protein concentration (2.75 μM), one sufficient to inhibit 10 to 20% of the mouse TAP activity and all of the human TAP activity. In this experiment, specific binding to microsomes containing murine TAP was determined by subtracting the binding to microsomes from insect cells that were not induced to express murine TAP (1). The binding of ICP47-1 and ICP47-2 to human TAP was easily measured (Fig. (Fig.5),5), although under these conditions it is important to note that ICP47-1 and ICP47-2 were present at concentrations beyond those required to saturate the TAP (Fig. (Fig.4A).4A). By contrast, it was found that there was little or no significant binding of ICP47-1 or ICP47-2 to microsomes containing murine TAP when background binding to control membranes was subtracted. In the experiment shown, specific ICP47-2 binding was greater than zero, but in other experiments this binding was less than zero, and thus we concluded that there was no detectable binding overall. In every experiment, it was clear that the level of binding of ICP47-1 and ICP47-2 to murine TAP was at least 25-fold lower than to human TAP. However, the human TAP present in these microsomes was limiting in these experiments, and thus it is very likely that the 25-fold difference between the levels of binding to human and mouse TAP is an underestimate. More likely this difference is 50- to 100-fold. On the basis of the inhibitory concentrations required to block murine TAP and the binding studies described above, estimates of the binding affinities of ICP47-1 and ICP47-2 for murine TAP may fall in the range of 5 × 10−6 M. Therefore, ICP47-1 and ICP47-2 bind poorly to the murine TAP, and this largely accounts for their inability to block mouse TAP peptide transport. Open in a separate windowFIG. 5Binding of ICP47-1 and ICP47-2 to microsomes containing murine TAP. Microsomes containing human TAP or control membranes without human TAP (100 μg of membrane protein per 150-μl assay) or microsomes containing mouse TAP or control membranes without mouse TAP (50 μg of membrane protein with the same TAP activity as with the human microsomes) were incubated with 125I-labelled ICP47-1 or ICP47-2 at 2.75 μM for 60 min at 4°C. The microsomes were washed twice, pelleted, and disrupted with detergents as described previously (7). Radioactivity associated with the microsomes was quantified by gamma counting. “ICP47 bound” refers to specific binding, calculated by subtracting the binding to control membranes (without TAP) from that observed with microsomes containing human or murine TAP.In summary, ICP47-2 and ICP47-1 could block human TAP and bound to TAP with similar high affinities. It was interesting that these two proteins, whose primary structures are only about 40% identical, inhibit human TAP with indistinguishable profiles and bind to human TAP with virtually identical affinities. Moreover, both proteins blocked murine TAP poorly and only at high protein concentrations and could not bind to murine TAP. These results, at face value, would suggest that mice will not be an appropriate model in which to test the effects of ICP47 on HSV replication or as a selective inhibitor of CD8+ T-cell responses in other systems. However, we recently found that an HSV-1 ICP47 mutant showed dramatically reduced neurovirulence in mice, without altering the course of disease in the cornea (4). Therefore, ICP47 may attain sufficient concentrations in certain cells in the nervous systems of mice to inhibit TAP. This may be related to the fact that TAP and class I proteins are expressed at low levels in the nervous system. Alternatively, ICP47 may have other functions in the nervous system.  相似文献   

18.
IL-12增强流感血凝素DNA疫苗在小鼠中抗流感作用   总被引:1,自引:0,他引:1  
流感病毒的表面抗原血凝素 (hemagglutinin ,HA)能作为DNA疫苗抗流感病毒攻击 ,在小鼠模型中检测白介素 12 (interleukin 12 ,IL 12 )能否作为HADNA疫苗佐剂增强小鼠抗流感病毒攻击。将IL 12和HA共同免疫小鼠 ,免疫 2次 ,间隔 3周 ,加强免疫后用致死量流感病毒攻击。共同免疫IL 12和HADNA与单独免疫HA相比 ,无论初免还是加强免疫后血清中抗HA的IgG抗体显著提高 ,小鼠体重丢失 (一种临床症状 )明显减少且提高了小鼠的存活率。这些结果表明了IL 12能作为一种佐剂提高流感DNA疫苗的免疫效价。  相似文献   

19.
The envelope of human parainfluenza virus type 3 (HPF3) contains two viral glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). HN, which is responsible for receptor attachment and for promoting F-mediated fusion, also possesses neuraminidase (receptor-destroying) activity. We reported previously that 4-guanidino-neu5Ac2en (4-GU-DANA) and related sialic acid-based inhibitors of HPF3 neuraminidase activity also inhibit HN-mediated receptor binding and fusion processes not involving neuraminidase activity. We have now examined this mechanism, as well as neuraminidase's role in the viral life cycle, using a neuraminidase-deficient HPF3 variant (C28a) and stable cell lines expressing C28a or wild-type (wt) HN. C28a, which has a wt F sequence and two point mutations in the HN gene corresponding to two amino acid changes in the HN protein, is the first HPF3 variant with insignificant neuraminidase activity. Cells expressing C28a HN did not bind erythrocytes at 4 degrees C unless pretreated with neuraminidase, but no such pretreatment was required for hemadsorption activity (HAD) at 22 or 37 degrees C. HAD was blocked by 4-GU-DANA, attesting to the ability of this compound to inhibit HN's receptor-binding activity. C28a or wt plaque enlargement, a process that involves cell-cell fusion and does not depend on virion release, is diminished by the presence of 4-GU-DANA, confirming the inhibitory effect of 4-GU-DANA on the fusogenic function of C28a HN. In C28a-infected cell monolayers, virion release and thus multicycle replication are severely restricted. This defect was corrected by supplementation of exogenous neuraminidase and also by the addition of 4-GU-DANA; neuraminidase destroys the receptors whereby newly formed C28a virions would remain attached to the cell surface, whereas 4-GU-DANA prevents the attachment itself, obviating the need for receptor cleavage. In accord with the ability of 4-GU-DANA to prevent attachment, the neuraminidase inhibitory effect of 4-GU-DANA on wt HPF3 did not diminish virion release into the medium. Thus, it is by inhibition of viral entry and syncytium formation that sialic acid analogs like 4-GU-DANA may counteract wt HPF3 infection.  相似文献   

20.
Human parainfluenza virus type 3 (HPIV3) can cause severe respiratory tract diseases in infants and young children, but no licensed vaccines or antiviral agents are currently available for treatment. Fusing the viral and target cell membranes is a prerequisite for its entry into host cells and is directly mediated by the fusion (F) protein. Although several domains of F are known to have important effects on regulating the membrane fusion activity, the roles of the DI-DII linker (residues 369–374) of the HPIV3 F protein in the fusogenicity still remains ill-defined. To facilitate our understanding of the role of this domain might play in F-induced cell-cell fusion, nine single mutations were engineered into this domain by site-directed mutagenesis. A vaccinia virus-T7 RNA polymerase transient expression system was employed to express the wild-type or mutated F proteins. These mutants were analyzed for membrane fusion activity, cell surface expression, and interaction between F and HN protein. Each of the mutated F proteins in this domain has a cell surface expression level similar to that of wild-type F. All of them resulted in a significant reduction in fusogenic activity in all steps of membrane fusion. Furthermore, all these fusion-deficient mutants reduced the amount of the HN-F complexes at the cell surface. Together, the results of our work suggest that this region has an important effect on the fusogenic activity of F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号