共查询到19条相似文献,搜索用时 46 毫秒
1.
赤水河鱼类资源的现状与保护 总被引:8,自引:0,他引:8
赤水河是长江上游右岸一级支流,为长江上游珍稀特有鱼类国家级自然保护区的重要组成部分。为了了解赤水河鱼类资源现状,于2007年4-10月在赤水河流域进行了鱼类资源调查。在干、支流共51个采样点采集了鱼类标本;对茅台镇、赤水市和合江县三个江段的渔获物进行了统计和分析。共采集到鱼类119种(亚种),隶属于5目16科75属。其中25种为该水域的新记录;34种为长江上游特有鱼类,尤其是宽唇华缨鱼(Sinocrossocheilus labiatus)仅分布于赤水河。在上、中、下游分别采集到鱼类36、61和100种。宽鳍鱲(Zacco platypus)、中华倒刺鲃(Spinibarbus sinensis)、光泽黄颡鱼(Pelteobagrus nitidus)、张氏(Hemiculter tchangi)和蛇鮈(Saurogobio dabryi)为赤水河中主要的经济鱼类,同时,各江段渔获物的组成也存在一定的差别。本研究表明,赤水河流域鱼类种类相对丰富,但过度捕捞和涉水活动导致鱼类资源出现了一定程度的衰减。 相似文献
2.
使用eDNA宏条形码(eDNA metabarcoding)和地笼法检测了北京市3条水系在夏季和秋季两个季节的鱼类多样性, 旨在研究北京市鱼类群落的空间格局特征, 探索适用于北京鱼类生物多样性监测及保护的新方法。结果表明: 在北京市的34个采样点中, 利用eDNA metabarcoding共检测出鱼类55种, 显著高于传统方法所捕获的鱼类种数(35种), 鱼类组成以鲤形目和鲈形目为主。山区河流清水鱼的多样性要显著高于城区河流, 城区河流(北运河水系)群落结构较为单一, 以鲫(Carassius auratus)、麦穗鱼(Pseudorasbora parva)、泥鳅(Misgurnus anguillicaudatus)等耐污种为优势种; 山区河流(潮白河水系及大清河水系)以宽鳍鱲(Zacco platypus)、拉氏鱥(Rhynchocypris lagowskii)、马口鱼(Opsariichthys uncirostris)等为优势种。不同季节影响清水鱼群落结构的环境因子不同, 夏季主要是总溶解固体和电导率, 秋季主要是海拔和温度。清水鱼丰富度与环境因子及人类活动的相关性表明, 清水鱼的丰富度随着总溶解固体及灯光指数增加而显著降低, 且均与海拔、温度等存在显著相关性。本研究证明了eDNA metabarcoding方法用于监测北京市鱼类多样性及其时空分布的可行性。 相似文献
3.
全球渔业衰退是21世纪人类面临的重要挑战之一。为了有效地遏制鱼类资源的衰退,精确的鱼类生态调查是其首要任务。传统的鱼类监测以渔获物采集与形态学鉴定为主,往往耗时耗力且效果不佳,已无法满足现阶段大尺度上的精确调查。环境DNA (eDNA)技术作为一种近年来新兴的鱼类生态调查方法,其与传统方法相比具有灵敏度高、经济高效、采样受限小且对生态系统无干扰的优势,目前其已被广泛地应用于鱼类物种监测、多样性调查、生物量评估以及繁殖活动监测等方面的研究。然而,eDNA技术在鱼类生态学研究的具体应用中暴露出的一些问题将会影响其监测结果的精确性,诸如操作流程的不规范、基因数据库的不完善以及eDNA在环境中生态学过程的不明确等。鉴于上述原因,首先对eDNA技术的发展历程、分析流程以及eDNA技术在鱼类生态学研究领域中的研究进展进行了综述,而后着重分析了eDNA技术的发展当前所面临的困难与挑战,并提出了相应的解决方案,最后对eDNA技术未来在鱼类生态学研究领域中的发展趋势做出了展望。通过本研究,以期能够为eDNA技术在鱼类生态学领域中的准确应用提供理论基础。 相似文献
4.
研究采用高通量测序技术对长江口水域环境DNA(Environmental DNA, eDNA)样品进行分析, 并与传统渔业资源调查结果对比, 阐述长江口鱼类群落在其生境内的多样性特征, 探讨eDNA技术在长江口水域鱼类多样性研究中的应用前景。结果显示, eDNA技术共检测到10目21科41属45种鱼类, 各站点鱼类丰富度之间无显著差异, 而多样性之间存在显著差异性。底拖网法共捕获11目16科29属33种鱼类。有18种鱼类在两种方法中均检测到, 占鱼类总数的30%。两种方法检测到的鱼类中均以鲈形目(Perciformes)最多, 其次是鲤形目(Cypriniformes), 两种方法的结果均表明刀鲚(Coilia nasus)和凤鲚(Coilia mystus)为优势物种。研究表明环境DNA技术在长江口水域渔业资源监测中具有可行性, 在禁捕环境下可根据实际情况采用不同方法对渔业资源进行监测。 相似文献
5.
研究使用环境DNA宏条形码(eDNA metabarcoding)检测洱海鱼类多样性,探索适用于洱海鱼类多样性监测和保护的新方法。通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程,从洱海16个采样点中获得可检测的9个采样点数据,共检测出17种鱼类,其中土著种5种、外来种12种;鲫(Carassius auratus)、鳙(Hypophthalmichthys nobilis)、麦穗鱼(Pseudorasbora parva)、泥鳅(Misgurnus anguillicaudatus)和食蚊鱼(Gambusia affinis)为优势种。研究结果表明虽然环境DNA宏条形码无法完全替代传统的鱼类监测方法,但作为一种新兴的生物多样性监测手段,其可用于快速检测洱海鱼类多样性及其空间分布。 相似文献
6.
7.
黄浦江和苏州河上游鱼类多样性组成的时空特征 总被引:5,自引:0,他引:5
为初步了解黄浦江和苏州河的鱼类多样性组成及其时空分布特征,2005年6月至2006年5月,对黄浦江上游河段的淀峰、松浦大桥两个站点,以及苏州河上游河段的白鹤、黄渡两个站点进行了逐月的鱼类监测。四个站点共采集到鱼类44种,隶属10目14科35属,其中苏州河上游30种,隶属6目10科25属,黄浦江上游39种,隶属10目13科32属。黄浦江上游鱼类的物种多样性明显高于苏州河上游,白鹤、松浦大桥、淀峰之间的鱼类群落为中等相似,黄渡与松浦大桥、淀峰之间的鱼类群落为中等不相似。各站点的鱼类具明显的季节性变化,夏、秋季大于冬、春季。四个站点的鱼类均以杂食性和定居性的物种为主,杂食性鱼类物种数占51.5–62.5%。松浦大桥站的江海洄游性和河湖洄游性鱼类数量明显多于其他站点。鱼类物种的时空重现率计算结果反映了黄浦江、苏州河上游各水域的鱼类群落具相对独立性。初步研究结果表明长期恶化的水质问题和较差的水系连通度可能是影响苏州河上游鱼类多样性的关键因素,而黄浦江具更大水域面积,以及较好水质状况和水系连通度,有利于丰富鱼类多样性。 相似文献
8.
9.
鱼类的怀卵量和产卵量差别很大。如虎鲨每次产卵2枚 ;中华多刺鱼怀卵量百余粒 ,银鱼怀卵量 2 0 3~34 5 2 0粒 ,银鲳怀卵量 8万~ 30万粒 ,江鳕怀卵量 5万~30 0万粒 ,青鱼怀卵量 2 6万~ 6 95万粒 ,翻车鱼屯怀卵量竟高达 3亿粒。同为鱼类 ,相差如此悬珠。日常雌鱼满肚怀卵现象非常普遍 ,然而灰星鲨腹中怀的却是小鲨鱼 ,这些都说明鱼类的生殖方式是多种多样的。其生殖方式可归纳为3种类型 :1 卵生大多数鱼类的生殖方式是卵生。其卵一般无卵壳保护 ,卵子产出体外 ,能否受精、孵化、成活 ,往往是“听天由命”,所以产卵量很大 ,成活率却很低。… 相似文献
10.
文章采用环境DNA宏条码和底拖网对珠江河口鱼类多样性进行了研究, 并对两种方法进行了比较。利用环境DNA宏条码检测到了175种鱼类, 而利用底拖网采集到了47种鱼类, 结合两种方法共检测出179种鱼类, 隶属于15 目63科128属。其中两种方法共同识别了鱼类43种, 占总检测物种的24.02%, 基于底拖网的调查未能收集到基于环境DNA宏条码检测到的大多数物种。根据Shannon指数和Simpson指数显示, DNA宏条码所检测珠江河口鱼类群落α多样性显著高于底拖网方法(P<0.05)。两种方法的PCoA结果均显示珠江河口鱼类群落存在空间结构, 基于环境DNA宏条码的分析显示空间重叠更多。两种方法基于冗余分析均显示溶解氧和盐度是影响鱼类群落结构的主要环境因子。研究表明, 环境DNA 宏条形码是一种环保且可靠的评估方法, 将其搭载到现有调查可以更好地了解河口鱼类多样性。 相似文献
11.
Shan Zhang Qi Lu Yiyan Wang Xiaomei Wang Jindong Zhao Meng Yao 《Molecular ecology resources》2020,20(1):242-255
Freshwater fish biodiversity is quickly decreasing and requires effective monitoring and conservation. Environmental DNA (eDNA)‐based methods have been shown to be highly sensitive and cost‐efficient for aquatic biodiversity surveys, but few studies have systematically investigated how spatial sampling design affects eDNA‐detected fish communities across lentic systems of different sizes. We compared the spatial patterns of fish diversity determined using eDNA in three lakes of small (SL; 3 ha), medium (ML; 122 ha) and large (LL; 4,343 ha) size using a spatially explicit grid sampling method. A total of 100 water samples (including nine, 17 and 18 shoreline samples and six, 14 and 36 interior samples from SL, ML and LL, respectively) were collected, and fish communities were analysed using eDNA metabarcoding of the mitochondrial 12S region. Together, 30, 35 and 41 fish taxa were detected in samples from SL, ML, and LL, respectively. We observed that eDNA from shoreline samples effectively captured the majority of the fish diversity of entire waterbodies, and pooled samples recovered fewer species than individually processed samples. Significant spatial autocorrelations between fish communities within 250 m and 2 km of each other were detected in ML and LL, respectively. Additionally, the relative sequence abundances of many fish species exhibited spatial distribution patterns that correlated with their typical habitat occupation. Overall, our results support the validity of a shoreline sampling strategy for eDNA‐based fish community surveys in lentic systems but also suggest that a spatially comprehensive sampling design can reveal finer distribution patterns of individual species. 相似文献
12.
13.
S. V. Turanov;M. A. Koltsova;O. A. Rutenko; 《Ecology and evolution》2024,14(7):e11631
Intraspecific genetic variation is important for the assessment of organisms' resistance to changing environments and anthropogenic pressures. Aquatic DNA metabarcoding provides a non-invasive method in biodiversity research, including investigations at the within-species level. Through the analysis of eDNA samples collected from the Peter the Great Gulf of the Japan Sea, in this study, we aimed to evaluate the identification of Amplicon Sequence Variants (ASVs) in marine eDNA among abundant species of the Zostera sp. community: Hexagrammos octogrammus, Pholidapus dybowskii (Teleostei: Perciformes), and Pandalus latirostris (Arthropoda: Decapoda). These species were collected from two distant locations to produce mock communities and gather aquatic eDNA both on the community and individual level. Our approach highlights the efficacy of eDNA metabarcoding in capturing haplotypic diversity and the potential for this methodology to track genetic diversity accurately, contributing to conservation efforts and ecosystem management. Additionally, our results elucidate the impact of nuclear mitochondrial DNA segments (NUMTs) on the reliability of metabarcoding data, indicating the necessity for cautious interpretation of such data in ecological studies. Moreover, we analyzed 83 publicly available COI sequence datasets from common groups of multicellular organisms (Mollusca, Echinodermata, Crustacea, Polychaeta, and Actinopterygii). The results reflect the decrease in population diversity that arises from using the metabarcode compared to the COI barcode. 相似文献
14.
Gert‐Jan Jeunen Michael Knapp Hamish G. Spencer Miles D. Lamare Helen R. Taylor Michael Stat Michael Bunce Neil J. Gemmell 《Molecular ecology resources》2019,19(2):426-438
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs. 相似文献
15.
Gert‐Jan Jeunen Michael Knapp Hamish G. Spencer Helen R. Taylor Miles D. Lamare Michael Stat Michael Bunce Neil J. Gemmell 《Ecology and evolution》2019,9(3):1323-1335
DNA extraction from environmental samples (environmental DNA; eDNA) for metabarcoding‐based biodiversity studies is gaining popularity as a noninvasive, time‐efficient, and cost‐effective monitoring tool. The potential benefits are promising for marine conservation, as the marine biome is frequently under‐surveyed due to its inaccessibility and the consequent high costs involved. With increasing numbers of eDNA‐related publications have come a wide array of capture and extraction methods. Without visual species confirmation, inconsistent use of laboratory protocols hinders comparability between studies because the efficiency of target DNA isolation may vary. We determined an optimal protocol (capture and extraction) for marine eDNA research based on total DNA yield measurements by comparing commonly employed methods of seawater filtering and DNA isolation. We compared metabarcoding results of both targeted (small taxonomic group with species‐level assignment) and universal (broad taxonomic group with genus/family‐level assignment) approaches obtained from replicates treated with the optimal and a low‐performance capture and extraction protocol to determine the impact of protocol choice and DNA yield on biodiversity detection. Filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit outperformed other combinations of capture and extraction methods, showing a ninefold improvement in DNA yield over the poorest performing methods. Use of optimized protocols resulted in a significant increase in OTU and species richness for targeted metabarcoding assays. However, changing protocols made little difference to the OTU and taxon richness obtained using universal metabarcoding assays. Our results demonstrate an increased risk of false‐negative species detection for targeted eDNA approaches when protocols with poor DNA isolation efficacy are employed. Appropriate optimization is therefore essential for eDNA monitoring to remain a powerful, efficient, and relatively cheap method for biodiversity assessments. For seawater, we advocate filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit or phenol‐chloroform‐isoamyl for successful implementation of eDNA multi‐marker metabarcoding surveys. 相似文献
16.
Pablo Saenz-Agudelo;Paula Ramirez;Ricardo Beldade;Ana N. Campoy;Vladimir Garmendia;Francesca V. Search;Miriam Fernández;Evie A. Wieters;Sergio A. Navarrete;Mauricio F. Landaeta;Alejandro Pérez-Matus; 《Ecology and evolution》2024,14(2):e10999
Temperate mesophotic reef ecosystems (TMREs) are among the least known marine habitats. Information on their diversity and ecology is geographically and temporally scarce, especially in highly productive large upwelling ecosystems. Lack of information remains an obstacle to understanding the importance of TMREs as habitats, biodiversity reservoirs and their connections with better-studied shallow reefs. Here, we use environmental DNA (eDNA) from water samples to characterize the community composition of TMREs on the central Chilean coast, generating the first baseline for monitoring the biodiversity of these habitats. We analyzed samples from two depths (30 and 60 m) over four seasons (spring, summer, autumn, and winter) and at two locations approximately 16 km apart. We used a panel of three metabarcodes, two that target all eukaryotes (18S rRNA and mitochondrial COI) and one specifically targeting fishes (16S rRNA). All panels combined encompassed eDNA assigned to 42 phyla, 90 classes, 237 orders, and 402 families. The highest family richness was found for the phyla Arthropoda, Bacillariophyta, and Chordata. Overall, family richness was similar between depths but decreased during summer, a pattern consistent at both locations. Our results indicate that the structure (composition) of the mesophotic communities varied predominantly with seasons. We analyzed further the better-resolved fish assemblage and compared eDNA with other visual methods at the same locations and depths. We recovered eDNA from 19 genera of fish, six of these have also been observed on towed underwater videos, while 13 were unique to eDNA. We discuss the potential drivers of seasonal differences in community composition and richness. Our results suggest that eDNA can provide valuable insights for monitoring TMRE communities but highlight the necessity of completing reference DNA databases available for this region. 相似文献
17.
Automated species identification based on data produced with metabarcoding offers an alternative for assessing biodiversity of bulk insect samples obtained with traps. We used a standard two‐step PCR approach to amplify a 313 bp fragment of the barcoding region of the mitochondrial COI gene. The PCR products were sequenced on an Illumina MiSeq platform, and the OTUs production and taxonomic identifications were performed with a customized pipeline and database. The DNA used in the PCR procedures was extracted directly from the preservative ethanol of bulk insect samples obtained with automatic light traps in 12 sampling areas located in different biomes of Brazil, during wet and dry seasons. Agricultural field and forest edge habitats were collected for all sampling areas. A total of 119 insect OTUs and nine additional OTUs assigned to other arthropod taxa were obtained at a ≥97% sequence similarity level. The alpha and beta diversity analyses comparing biomes, habitats, and seasons were mostly inconclusive, except for a significant difference in beta diversity between biomes. In this study, we were able to metabarcode and HTS adult insects from their preservative medium. Notwithstanding, our results underrepresent the true magnitude of insect diversity expected from samples obtained with automatic light traps in Brazil. Although biological and technical factors might have impacted our results, measures to optimize and standardize eDNA HTS should be in place to improve taxonomic coverage of samples of unknown diversity and stored in suboptimal conditions, which is the case of most eDNA samples. 相似文献
18.
Tristan Milhau Alice Valentini Nicolas Poulet Nicolas Roset Pauline Jean Coline Gaboriaud Tony Dejean 《Journal of fish biology》2021,98(2):387-398
As fish communities are a major concern in rivers ecosystems, we investigated if their environmental (e)DNA signals vary according to the sampling period or hydromorphological conditions. Three rivers were studied over a year using eDNA metabarcoding approach. The majority of the species (c. 80%) were detected all year round in two rivers having similar hydromorphological conditions, whereas in the river affected by an upstream lake waterflow, more species were detected sporadically (42%). For all the rivers, in more than 98% of the occasional detections, the reads abundance represented <0.4% of the total reads per site and per sampling session. Even if the majority of the fish communities remained similar over the year for each of the three rivers, specific seasonal patterns were observed. We studied if the waterflow or the reproduction period had an effect on the observed dynamics. Waterflow, which influences eDNA downstream transportation, had a global influence in taxonomic richness, while the fishes' reproductive period had only an influence on certain species. Our results may help selecting the best sampling strategy according to research objectives. To study fish communities at local scale, seasons of low waterflow periods are recommended. This particularly helps to restraint effects of external eDNA coming from connections with other aquatic environment (tributaries, lakes, wetlands, sewage effluents, etc.). To obtain a more integrative overview of the fish community living in a river basin, high waterflow or breeding seasons are preferable for enhancing species detection probability, especially for rare species. 相似文献
19.
Forrest W. Lefler David E. Berthold H. Dail Laughinghouse IV 《Journal of phycology》2023,59(3):470-480
Cyanobacteria are photosynthetic bacteria that occupy various habitats across the globe, playing critical roles in many of Earth's biogeochemical cycles both in both aquatic and terrestrial systems. Despite their well-known significance, their taxonomy remains problematic and is the subject of much research. Taxonomic issues of Cyanobacteria have consequently led to inaccurate curation within known reference databases, ultimately leading to problematic taxonomic assignment during diversity studies. Recent advances in sequencing technologies have increased our ability to characterize and understand microbial communities, leading to the generation of thousands of sequences that require taxonomic assignment. We herein propose CyanoSeq ( https://zenodo.org/record/7569105 ), a database of cyanobacterial 16S rRNA gene sequences with curated taxonomy. The taxonomy of CyanoSeq is based on the current state of cyanobacterial taxonomy, with ranks from the domain to genus level. Files are provided for use with common naive Bayes taxonomic classifiers, such as those included in DADA2 or the QIIME2 platform. Additionally, FASTA files are provided for creation of de novo phylogenetic trees with (near) full-length 16S rRNA gene sequences to determine the phylogenetic relationship of cyanobacterial strains and/or ASV/OTUs. The database currently consists of 5410 cyanobacterial 16S rRNA gene sequences along with 123 Chloroplast, Bacterial, and Vampirovibrionia (formally Melainabacteria) sequences. 相似文献