首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.  相似文献   

2.
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The algorithm is implemented and available at http://cps.kaist.ac.kr/∼ckhong/tools/download/PAD.tar.gz.  相似文献   

3.
4.
5.
6.
Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx.  相似文献   

7.
Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.  相似文献   

8.
Subgraph matching algorithms are used to find and enumerate specific interconnection structures in networks. By enumerating these specific structures/subgraphs, the fundamental properties of the network can be derived. More specifically in biological networks, subgraph matching algorithms are used to discover network motifs, specific patterns occurring more often than expected by chance. Finding these network motifs yields information on the underlying biological relations modelled by the network. In this work, we present the Index-based Subgraph Matching Algorithm with General Symmetries (ISMAGS), an improved version of the Index-based Subgraph Matching Algorithm (ISMA). ISMA quickly finds all instances of a predefined motif in a network by intelligently exploring the search space and taking into account easily identifiable symmetric structures. However, more complex symmetries (possibly involving switching multiple nodes) are not taken into account, resulting in superfluous output. ISMAGS overcomes this problem by using a customised symmetry analysis phase to detect all symmetric structures in the network motif subgraphs. These structures are then converted to symmetry-breaking constraints used to prune the search space and speed up calculations. The performance of the algorithm was tested on several types of networks (biological, social and computer networks) for various subgraphs with a varying degree of symmetry. For subgraphs with complex (multi-node) symmetric structures, high speed-up factors are obtained as the search space is pruned by the symmetry-breaking constraints. For subgraphs with no or simple symmetric structures, ISMAGS still reduces computation times by optimising set operations. Moreover, the calculated list of subgraph instances is minimal as it contains no instances that differ by only a subgraph symmetry. An implementation of the algorithm is freely available at https://github.com/mhoubraken/ISMAGS.  相似文献   

9.
Despite being a highly studied model organism, most genes of the cyanobacterium Synechocystis sp. PCC 6803 encode proteins with completely unknown function. To facilitate studies of gene regulation in Synechocystis, we have developed Synergy (http://synergy.plantgenie.org), a web application integrating co-expression networks and regulatory motif analysis. Co-expression networks were inferred from publicly available microarray experiments, while regulatory motifs were identified using a phylogenetic footprinting approach. Automatically discovered motifs were shown to be enriched in the network neighborhoods of regulatory proteins much more often than in the neighborhoods of non-regulatory genes, showing that the data provide a sound starting point for studying gene regulation in Synechocystis. Concordantly, we provide several case studies demonstrating that Synergy can be used to find biologically relevant regulatory mechanisms in Synechocystis. Synergy can be used to interactively perform analyses such as gene/motif search, network visualization and motif/function enrichment. Considering the importance of Synechocystis for photosynthesis and biofuel research, we believe that Synergy will become a valuable resource to the research community.  相似文献   

10.
11.
12.
The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through canSAR.icr.ac.uk. Underlying data and tools are available at https://cansar.icr.ac.uk/cansar/publications/druggable_network_neighbourhoods/.  相似文献   

13.

Background

The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence.

Results

In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes.

Conclusions

The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.  相似文献   

14.
15.

Background

Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way.

Results

SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers.

Conclusions

This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.  相似文献   

16.
The purpose of this article is to introduce a diffusion model for biological organisms that increase their motility when food or other resource is insufficient. It is shown in this paper that Fick’s diffusion law does not explain such a starvation driven diffusion correctly. The diffusion model for nonuniform Brownian motion in Kim (Einstein’s random walk and thermal diffusion, preprint http://amath.kaist.ac.kr/papers/Kim/31.pdf, 2013) is employed in this paper and a Fokker–Planck type diffusion law is obtained. Lotka–Volterra type competition systems with spatial heterogeneity are tested, where one species follows the starvation driven diffusion and the other follows the linear diffusion. In heterogeneous environments, the starvation driven diffusion turns out to be a better survival strategy than the linear one. Various issues such as the global asymptotic stability, convergence to an ideal free distribution, the extinction and coexistence of competing species are discussed.  相似文献   

17.

Background

Computing the long term behavior of regulatory and signaling networks is critical in understanding how biological functions take place in organisms. Steady states of these networks determine the activity levels of individual entities in the long run. Identifying all the steady states of these networks is difficult due to the state space explosion problem.

Methodology

In this paper, we propose a method for identifying all the steady states of Boolean regulatory and signaling networks accurately and efficiently. We build a mathematical model that allows pruning a large portion of the state space quickly without causing any false dismissals. For the remaining state space, which is typically very small compared to the whole state space, we develop a randomized traversal method that extracts the steady states. We estimate the number of steady states, and the expected behavior of individual genes and gene pairs in steady states in an online fashion. Also, we formulate a stopping criterion that terminates the traversal as soon as user supplied percentage of the results are returned with high confidence.

Conclusions

This method identifies the observed steady states of boolean biological networks computationally. Our algorithm successfully reported the G1 phases of both budding and fission yeast cell cycles. Besides, the experiments suggest that this method is useful in identifying co-expressed genes as well. By analyzing the steady state profile of Hedgehog network, we were able to find the highly co-expressed gene pair GL1-SMO together with other such pairs.

Availability

Source code of this work is available at http://bioinformatics.cise.ufl.edu/palSteady.html twocolumnfalse]  相似文献   

18.
Regression trees for regulatory element identification   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号