首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This study is designed to evaluate the visual outcomes, accuracy, and predictability of corneal flaps with different thicknesses created by 60-kHz femtosecond laser according to different corneal thicknesses in the patients with low and moderate refractive error. A total of 182 eyes were divided according to the central corneal thickness (470μm–499 μm in Group A, 500μm–549 μm in Group B, and 550μm–599 μm in Group C) and underwent femtosecond laser-assisted LASIK for a target corneal flap thickness (100 μm for Group A, 110 μm for Group B, and 120 μm for Group C). Uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), and refractive status were examined. The flap thickness of each eye was measured by anterior segment optical coherence tomography (AS-OCT) on 30 points at 1-month follow-up to assess the accuracy and predictability. Postoperatively, at least 75% of eyes had a UDVA of 20/16 or better, less than 2% of eyes lost one line, over 30% of eyes gained one or more lines in CDVA, at least 95% of eyes had astigmatism of less than 0.25 D, all eyes achieved a correction within ±1.00 D from the target spherical equivalent refraction. The visual and refractive outcomes did not differ significantly in all groups (P >0.05). The mean flap thickness was 100.36± 4.32 μm (range: 95–113 μm) in Group A, 111.64 ± 3.62 μm (range: 108–125 μm) in Group B, and 122.32 ± 2.88 μm (range: 112–128 μm) in Group C. The difference at each measured point among the three groups was significant (P < 0.05). The accuracy and predictability were satisfactory in all three groups. In conclusion, this customized treatment yielded satisfactory clinical outcomes with accurate and predictable flap thickness for patients with low and moderate refractive error.  相似文献   

2.
Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular compartments of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality that overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features. Here, we describe the design and operation of a superresolution two-photon microscope using pulsed excitation and STED lasers. We examine the depth dependence of STED imaging in acute tissue slices and find enhancement of 2P resolution ranging from approximately fivefold at 20 μm to approximately twofold at 90-μm deep. The depth dependence of resolution is found to be consistent with the depth dependence of depletion efficiency, suggesting resolution is limited by STED laser propagation through turbid tissue. Finally, we achieve live imaging of dendritic spines with 60-nm resolution and demonstrate that our technique allows accurate quantification of neuronal morphology up to 30-μm deep in living brain tissue.  相似文献   

3.
Nanoparticle uptake and distribution to solid tumors are limited by reticuloendothelial system systemic filtering and transport limitations induced by irregular intra-tumoral vascularization. Although vascular enhanced permeability and retention can aid targeting, high interstitial fluid pressure and dense extracellular matrix may hinder local penetration. Extravascular diffusivity depends upon nanoparticle size, surface modifications, and tissue vascularization. Gold nanoparticles functionalized with biologically-compatible layers may achieve improved uptake and distribution while enabling cytotoxicity through synergistic combination of chemotherapy and thermal ablation. Evaluation of nanoparticle uptake in vivo remains difficult, as detection methods are limited. We employ hyperspectral imaging of histology sections to analyze uptake and distribution of phosphatidylcholine-coated citrate gold nanoparticles (CGN) and silica-gold nanoshells (SGN) after tail-vein injection in mice bearing orthotopic pancreatic adenocarcinoma. For CGN, the liver and tumor showed 26.5±8.2 and 23.3±4.1 particles/100μm2 within 10μm from the nearest source and few nanoparticles beyond 50μm, respectively. The spleen had 35.5±9.3 particles/100μm2 within 10μm with penetration also limited to 50μm. For SGN, the liver showed 31.1±4.1 particles/100μm2 within 10μm of the nearest source with penetration hindered beyond 30μm. The spleen and tumor showed uptake of 22.1±6.2 and 15.8±6.1 particles/100μm2 within 10μm, respectively, with penetration similarly hindered. CGH average concentration (nanoparticles/μm2) was 1.09±0.14 in the liver, 0.74±0.12 in the spleen, and 0.43±0.07 in the tumor. SGN average concentration (nanoparticles/μm2) was 0.43±0.07 in the liver, 0.30±0.06 in the spleen, and 0.20±0.04 in the tumor. Hyperspectral imaging of histology sections enables analysis of phosphatidylcholine-coated gold-based nanoparticles in pancreatic tumors with the goal to improve nanotherapeutic efficacy.  相似文献   

4.
Physicochemical characterization of mitochondrial DNA from soybean   总被引:1,自引:1,他引:0  
Mitochondrial DNA (mtDNA) of soybean (Glycine max L.) was isolated and its buoyant density was contrasted with that of nuclear (nDNA) and chloroplast (ctDNA) DNA. Each of the three DNAs banded at a single, characteristic buoyant density when centrifuged to equilibrium in a CsCl gradient. Buoyant densities were 1.694 g/cm3 for nDNA and 1.706 g/cm3 for mtDNA. These values correspond to G-C contents of 34.7 and 46.9%, respectively. Covalently closed, circular mtDNA molecules were isolated from soybean hypocotyls by ethidium bromide-cesium chloride density gradient centrifugation. Considerable variation in mtDNA circle size was observed by electron microscopy. There were seven apparent size classes with mean lengths of 5.9 μm (class 1), 10 μm (class 2), 12.9 μm (class 3), 16.6 μm (class 4), 20.4 μm (class 5), 24.5 μm (class 6), and 29.9 μm (class 7). In addition, minicircles were observed in all preparations. Partially denatured, circular mtDNA molecules with at least one representative from six of the seven observed size classes were mapped. In class 4, there appear to be at least three distinct denaturation patterns, indicating heterogeneity within this class. It is proposed that the mitochondrial genome of soybean is distributed among the different size circular molecules, several copies of the genome are contained within these classes and that the majority of the various size molecules may be a result of recombination events between circular molecules.  相似文献   

5.
The treatment of extensive thermal injuries with insufficient autologous skin remains a great challenge to burn surgeons. In this study, we investigated the influence of the ratio of autologous and allogeneic tissue in mixed microskin grafts on wound healing in order to develop an effective method for using limited donor skin to cover a large open wound. Four different mixtures were tested: autologous microskin at an area expansion ratio of 10∶1 with allogeneic microskin at an area expansion ratio of 10∶1 or 10∶3 and autologous microskin at an expansion ratio of 20∶1 with allogeneic microskin at an expansion ratio of 20∶3 or 20∶6. Wound healing, wound contraction, and integrin β1 expression were measured. Mixed microskin grafting facilitated wound healing substantially. The mixture of autologous microskin at an expansion ratio of 10∶1 with the same amount of allogeneic microskin achieved the most satisfactory wound healing among the 4 tested mixtures. Histological examination revealed the presence of obviously thickened epidermis and ectopic integrin β1 expression. Keratinocytes expressing integrin β1 were scattered in the suprabasal layer. Higher levels of integrin β1 expression were associated with faster wound healing, implying that ectopic expression of integrin β1 in keratinocytes may play a pivotal role in wound healing. In conclusion, this study proves that this new skin grafting technique may improve wound healing.  相似文献   

6.

Purpose

To investigate repeatability and reproducibility of thickness of eight individual retinal layers at axial and lateral foveal locations, as well as foveal width, measured from Spectralis spectral domain optical coherence tomography (SD-OCT) scans using newly available retinal layer segmentation software.

Methods

High-resolution SD-OCT scans were acquired for 40 eyes of 40 young healthy volunteers. Two scans were obtained in a single visit for each participant. Using new Spectralis segmentation software, two investigators independently obtained thickness of each of eight individual retinal layers at 0°, 2° and 5° eccentricities nasal and temporal to foveal centre, as well as foveal width measurements. Bland-Altman Coefficient of Repeatability (CoR) was calculated for inter-investigator and inter-scan agreement of all retinal measurements. Spearman''s ρ indicated correlation of manually located central retinal thickness (RT0) with automated minimum foveal thickness (MFT) measurements. In addition, we investigated nasal-temporal symmetry of individual retinal layer thickness within the foveal pit.

Results

Inter-scan CoR values ranged from 3.1μm for axial retinal nerve fibre layer thickness to 15.0μm for the ganglion cell layer at 5° eccentricity. Mean foveal width was 2550μm ± 322μm with a CoR of 13μm for inter-investigator and 40μm for inter-scan agreement. Correlation of RT0 and MFT was very good (ρ = 0.97, P < 0.0005). There were no significant differences in thickness of any individual retinal layers at 2° nasal compared to temporal to fovea (P > 0.05); however this symmetry could not be found at 5° eccentricity.

Conclusions

We demonstrate excellent repeatability and reproducibility of each of eight individual retinal layer thickness measurements within the fovea as well as foveal width using Spectralis SD-OCT segmentation software in a young, healthy cohort. Thickness of all individual retinal layers were symmetrical at 2°, but not at 5° eccentricity away from the fovea.  相似文献   

7.
In cancer metastasis and other physiological processes, cells migrate through the three-dimensional (3D) extracellular matrix of connective tissue and must overcome the steric hindrance posed by pores that are smaller than the cells. It is currently assumed that low cell stiffness promotes cell migration through confined spaces, but other factors such as adhesion and traction forces may be equally important. To study 3D migration under confinement in a stiff (1.77 MPa) environment, we use soft lithography to fabricate polydimethylsiloxane (PDMS) devices consisting of linear channel segments with 20 μm length, 3.7 μm height, and a decreasing width from 11.2 to 1.7 μm. To study 3D migration in a soft (550 Pa) environment, we use self-assembled collagen networks with an average pore size of 3 μm. We then measure the ability of four different cancer cell lines to migrate through these 3D matrices, and correlate the results with cell physical properties including contractility, adhesiveness, cell stiffness, and nuclear volume. Furthermore, we alter cell adhesion by coating the channel walls with different amounts of adhesion proteins, and we increase cell stiffness by overexpression of the nuclear envelope protein lamin A. Although all cell lines are able to migrate through the smallest 1.7 μm channels, we find significant differences in the migration velocity. Cell migration is impeded in cell lines with larger nuclei, lower adhesiveness, and to a lesser degree also in cells with lower contractility and higher stiffness. Our data show that the ability to overcome the steric hindrance of the matrix cannot be attributed to a single cell property but instead arises from a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.  相似文献   

8.
Cutaneous mechanoreceptors transduce different tactile stimuli into neural signals that produce distinct sensations of touch. The Pacinian corpuscle (PC), a cutaneous mechanoreceptor located deep within the dermis of the skin, detects high frequency vibrations that occur within its large receptive field. The PC is comprised of lamellae that surround the nerve fiber at its core. We hypothesized that a layered, anisotropic structure, embedded deep within the skin, would produce the nonlinear strain transmission and low spatial sensitivity characteristic of the PC. A multiscale finite-element model was used to model the equilibrium response of the PC to indentation. The first simulation considered an isolated PC with fiber networks aligned with the PC’s surface. The PC was subjected to a 10 μm indentation by a 250 μm diameter indenter. The multiscale model captured the nonlinear strain transmission through the PC, predicting decreased compressive strain with proximity to the receptor’s core, as seen experimentally by others. The second set of simulations considered a single PC embedded epidermally (shallow) or dermally (deep) to model the PC’s location within the skin. The embedded models were subjected to 10 μm indentations at a series of locations on the surface of the skin. Strain along the long axis of the PC was calculated after indentation to simulate stretch along the nerve fiber at the center of the PC. Receptive fields for the epidermis and dermis models were constructed by mapping the long-axis strain after indentation at each point on the surface of the skin mesh. The dermis model resulted in a larger receptive field, as the calculated strain showed less indenter location dependence than in the epidermis model.  相似文献   

9.
PurposeTo investigate the influence of various risk factors on thinning of the lamina cribrosa (LC), as measured with swept-source optical coherence tomography (SS-OCT; Topcon).MethodsThis retrospective study comprised 150 eyes of 150 patients: 22 normal subjects, 28 preperimetric glaucoma (PPG) patients, and 100 open-angle glaucoma patients. Average LC thickness was determined in a 3 x 3 mm cube scan of the optic disc, over which a 4 x 4 grid of 16 points was superimposed (interpoint distance: 175 μm), centered on the circular Bruch’s membrane opening. The borders of the LC were defined as the visible limits of the LC pores. The correlation of LC thickness with Humphrey field analyzer-measured mean deviation (MD; SITA standard 24–2), circumpapillary retinal nerve fiber layer thickness (cpRNFLT), the vertical cup-to-disc (C/D) ratio, and tissue mean blur rate (MBR) was determined with Spearman''s rank correlation coefficient. The relationship of LC thickness with age, axial length, intraocular pressure (IOP), MD, the vertical C/D ratio, central corneal thickness (CCT), and tissue MBR was determined with multiple regression analysis. Average LC thickness and the correlation between LC thickness and MD were compared in patients with the glaucomatous enlargement (GE) optic disc type and those with non-GE disc types, as classified with Nicolela’s method.ResultsWe found that average LC thickness in the 16 grid points was significantly associated with overall LC thickness (r = 0.77, P < 0.001). The measurement time for this area was 12.4 ± 2.4 minutes. Average LC thickness in this area had a correlation coefficient of 0.57 with cpRNFLT (P < 0.001) and 0.46 (P < 0.001) with MD. Average LC thickness differed significantly between the groups (normal: 268 ± 23 μm, PPG: 248 ± 13 μm, OAG: 233 ± 20 μm). Multiple regression analysis showed that MD (β = 0.29, P = 0.013), vertical C/D ratio (β = -0.25, P = 0.020) and tissue MBR (β = 0.20, P = 0.034) were independent variables significantly affecting LC thickness, but age, axial length, IOP, and CCT were not. LC thickness was significantly lower in the GE patients (233.9 ± 17.3 μm) than the non-GE patients (243.6 ± 19.5 μm, P = 0.040). The correlation coefficient between MD and LC thickness was 0.58 (P < 0.001) in the GE patients and 0.39 (P = 0.013) in the non-GE patients.ConclusionCupping formation and tissue blood flow were independently correlated to LC thinning. Glaucoma patients with the GE disc type, who predominantly have large cupping, had lower LC thickness even with similar glaucoma severity.  相似文献   

10.
The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing.  相似文献   

11.
The swimming motions of cells within Bacillus subtilis colonies, as well as the associated fluid flows, were analyzed from video films produced during colony growth and expansion on wet agar surfaces. Individual cells in very wet dense populations moved at rates between 76 and 116 μm/s. Swimming cells were organized into patterns of whirls, each approximately 1,000 μm2, and jets of about 95 by 12 μm. Whirls and jets were short-lived, lasting only about 0.25 s. Patterns within given areas constantly repeated with a periodicity of approximately 1 s. Whirls of a given direction became disorganized and then re-formed, usually into whirls moving in the opposite direction. Pattern elements were also organized with respect to one another in the colony. Neighboring whirls usually turned in opposite directions. This correlation decreased as a function of distance between whirls. Fluid flows associated with whirls and jets were measured by observing the movement of marker latex spheres added to colonies. The average velocity of markers traveling in whirls was 19 μm/s, whereas those traveling in jets moved at 27 μm/s. The paths followed by markers were aligned with the direction of cell motion, suggesting that cells create flows moving with them into whirls and along jets. When colonies became dry, swimming motions ceased except in regions close to the periphery and in isolated islands where cells traveled in slow whirls at about 4 μm/s. The addition of water resulted in immediate though transient rapid swimming (> 80 μm/s) in characteristic whirl and jet patterns. The rate of swimming decreased to 13 μm/s within 2 min, however, as the water diffused into the agar. Organized swimming patterns were nevertheless preserved throughout this period. These findings show that cell swimming in colonies is highly organized.  相似文献   

12.
13.

Background

Stress, both acute and chronic, can impair cutaneous wound repair, which has previously been mechanistically ascribed to stress-induced elevations of cortisol. Here we aimed to examine an alternate explanation that the stress-induced hormone epinephrine directly impairs keratinocyte motility and wound re-epithelialization. Burn wounds are examined as a prototype of a high-stress, high-epinephrine, wound environment. Because keratinocytes express the β2-adrenergic receptor (β2AR), another study objective was to determine whether β2AR antagonists could block epinephrine effects on healing and improve wound repair.

Methods and Findings

Migratory rates of normal human keratinocytes exposed to physiologically relevant levels of epinephrine were measured. To determine the role of the receptor, keratinocytes derived from animals in which the β2AR had been genetically deleted were similarly examined. The rate of healing of burn wounds generated in excised human skin in high and low epinephrine environments was measured. We utilized an in vivo burn wound model in animals with implanted pumps to deliver β2AR active drugs to study how these alter healing in vivo. Immunocytochemistry and immunoblotting were used to examine the up-regulation of catecholamine synthetic enzymes in burned tissue, and immunoassay for epinephrine determined the levels of this catecholamine in affected tissue and in the circulation. When epinephrine levels in the culture medium are elevated to the range found in burn-stressed animals, the migratory rate of both cultured human and murine keratinocytes is impaired (reduced by 76%, 95% confidence interval [CI] 56%–95% in humans, p < 0.001, and by 36%, 95% CI 24%–49% in mice, p = 0.001), and wound re-epithelialization in explanted burned human skin is delayed (by 23%, 95% CI 10%–36%, p = 0.001), as compared to cells or tissues incubated in medium without added epinephrine. This impairment is reversed by β2AR antagonists, is absent in murine keratinocytes that are genetically depleted of the β2AR, and is reproduced by incubation of keratinocytes with other β2AR-specific agonists. Activation of the β2AR in cultured keratinocytes signals the down-regulation of the AKT pathway, accompanied by a stabilization of the actin cytoskeleton and an increase in focal adhesion formation, resulting in a nonmigratory phenotype. Burn wound injury in excised human skin also rapidly up-regulates the intra-epithelial expression of the epinephrine synthesizing enzyme phenylethanolamine-N-methyltransferase, and tissue levels of epinephrine rise dramatically (15-fold) in the burn wounded tissue (values of epinephrine expressed as pg/ug protein ± standard error of the mean: unburned control, 0.6 ± 0.36; immediately postburn, 9.6 ± 1.58; 2 h postburn, 3.1 ± 1.08; 24 h post-burn, 6.7 ± 0.94). Finally, using an animal burn wound model (20% body surface in mice), we found that systemic treatment with βAR antagonists results in a significant increase (44%, 95% CI 27%–61%, p < 0.00000001) in the rate of burn wound re-epithelialization.

Conclusions

This work demonstrates an alternate pathway by which stress can impair healing: by stress-induced elevation of epinephrine levels resulting in activation of the keratinocyte β2AR and the impairment of cell motility and wound re-epithelialization. Furthermore, since the burn wound locally generates epinephrine in response to wounding, epinephrine levels are locally, as well as systemically, elevated, and wound healing is impacted by these dual mechanisms. Treatment with beta adrenergic antagonists significantly improves the rate of burn wound re-epithelialization. This work suggests that specific β2AR antagonists may be apt, near-term translational therapeutic targets for enhancing burn wound healing, and may provide a novel, low-cost, safe approach to improving skin wound repair in the stressed individual.  相似文献   

14.
The rates of ingestion of natural bacterial assemblages by natural populations of zooplankton (>50 μm in size) were measured during a 19-day period in eutrophic Frederiksborg Slotssø, Denmark, as well as in experimental enclosures (containing 5.3 m3 of lake water). The fish and nutrients of the enclosures were manipulated. In enclosures without fish, large increases in ingestion by zooplankton >140 μm in size were found (up to 3 μg of C liter−1 h−1), compared with values less than 0.3 μg of C liter−1 h−1 in the enclosures with fish and in the open lake. Daphnia cucullata and D. galeata dominated the community of zooplankton of >140 μm. Ingestion rates for zooplankton between 50 and 140 μm decreased after a period of about 8 days, in all enclosures and in the lake, to values below 0.1 μg of C liter−1 h−1. On the last 2 sampling days, somewhat higher values were observed in the enclosures with fish present. The >50-μm zooplankton ingested 48 to 51% of the bacterial net secondary production in enclosures without fish, compared to 4% in the enclosures with added fish. Considering the sum of bacterial secondary production plus biomass change, 35 to 41% of the available bacteria were ingested by zooplankton of >50 μm in the enclosures without fish, compared with 4 to 6% in the enclosures with added fish and 21% in the open lake. Fish predation reduced the occurrence of zookplankton sized >50 μm and thus left a large proportion of the available bacteria to zooplankton sized <50 μm. In fact, there were 4.6 × 103 to 5.0 × 103 flagellates (4 to 8 μm in size) ml−1 in the enclosures with fish added as well as in the lake, compared with 0.5 × 102 to 2.3 × 102 ml−1 in the enclosures without fish. This link in the food chain was reduced when fish predation on zooplankton was eliminated and a direct route of dissolved organic matter, via the bacteria to the zooplankton, was established.  相似文献   

15.
In vivo and in vitro studies give a paradoxical picture of the actions of the key regulatory factor TGF-β1 in epidermal wound healing with it stimulating migration of keratinocytes but also inhibiting their proliferation. To try to reconcile these into an easily visualized 3D model of wound healing amenable for experimentation by cell biologists, a multiscale model of the formation of a 3D skin epithelium was established with TGF-β1 literature–derived rule sets and equations embedded within it. At the cellular level, an agent-based bottom-up model that focuses on individual interacting units (keratinocytes) was used. This was based on literature-derived rules governing keratinocyte behavior and keratinocyte/ECM interactions. The selection of these rule sets is described in detail in this paper. The agent-based model was then linked with a subcellular model of TGF-β1 production and its action on keratinocytes simulated with a complex pathway simulator. This multiscale model can be run at a cellular level only or at a combined cellular/subcellular level. It was then initially challenged (by wounding) to investigate the behavior of keratinocytes in wound healing at the cellular level. To investigate the possible actions of TGF-β1, several hypotheses were then explored by deliberately manipulating some of these rule sets at subcellular levels. This exercise readily eliminated some hypotheses and identified a sequence of spatial-temporal actions of TGF-β1 for normal successful wound healing in an easy-to-follow 3D model. We suggest this multiscale model offers a valuable, easy-to-visualize aid to our understanding of the actions of this key regulator in wound healing, and provides a model that can now be used to explore pathologies of wound healing.  相似文献   

16.
While scanning electrochemical microscopy (SECM) is a powerful technique for non-invasive analysis of cells, SECM-based assays remain scarce and have been mainly limited so far to single cells, which is mostly due to the absence of suitable platform for experimentation on 3D cellular aggregates or microtissues. Here, we report stamping of a Petri dish with a microwell array for large-scale production of microtissues followed by their in situ analysis using SECM. The platform is realized by hot embossing arrays of microwells (200 μm depth; 400 μm diameter) in commercially available Petri dishes, using a PDMS stamp. Microtissues form spontaneously in the microwells, which is demonstrated here using various cell lines (e.g., HeLa, C2C12, HepG2 and MCF-7). Next, the respiratory activity of live HeLa microtissues is assessed by monitoring the oxygen reduction current in constant height mode and at various distances above the platform surface. Typically, at a 40 μm distance from the microtissue, a 30% decrease in the oxygen reduction current is measured, while above 250 μm, no influence of the presence of the microtissues is detected. After exposure to a model drug (50% ethanol), no such changes in oxygen concentration are found at any height in solution, which reflects that microtissues are not viable anymore. This is furthermore confirmed using conventional live/dead fluorescent stains. This live/dead assay demonstrates the capability of the proposed approach combining SECM and microtissue arrays formed in a stamped Petri dish for conducting cellular assays in a non-invasive way on 3D cellular models.  相似文献   

17.
The specific activity of aminoacyl-tRNA synthetases (spAARS), an index of growth rate, and of the electron transport system (spETS), an index of respiration, was measured in three size fractions (73–150 μm, >150 μm and >350 μm) of zooplankton during five cruises to tropical coastal waters of the Kimberley coast (North West Australia) and four cruises to waters of the Great Barrier Reef (GBR; North East Australia). The N-specific biomass of plankton was 3–4-fold higher in the Kimberley than on the GBR in all 3 size classes: Kimberley 1.27, 3.63, 1.94 mg m-3; GBR 0.36, 0.88 and 0.58 mg m-3 in the 73–150 μm, >150 μm and >350 μm size classes, respectively. Similarly, spAARS activity in the Kimberley was greater than that of the GBR: 88.4, 132.2, and 147.6 nmol PPi hr-1 mg protein -1 in the Kimberley compared with 71.7, 82.0 and 83.8 nmol PPi hr-1 mg protein -1 in the GBR, for the 73–150 μm, >150 μm and >350 μm size classes, respectively. Specific ETS activity showed similar differences in scale between the two coasts: 184.6, 148.8 and 92.2 μL O2 hr-1 mg protein-1 in the Kimberley, against 86.5, 88.3 and 71.3 μL O2 hr-1 mg protein-1 in the GBR. On the basis of these measurements, we calculated that >150 μm zooplankton grazing accounted for 7% of primary production in the Kimberley and 8% in GBR waters. Area-specific respiration by >73 μm zooplankton was 7-fold higher in the Kimberley than on the GBR and production by >150 μm zooplankton was of the order of 278 mg C m-2 d-1 in the Kimberley and 42 mg C m-2 d-1 on the GBR. We hypothesize that the much stronger physical forcing on the North West shelf is the principal driver of higher rates in the west than in the east of the continent.  相似文献   

18.
19.
Paurodontella parapitica n. sp., collected from the rhizosphere of an apple tree in Kermanshah province, western Iran, is described. The new species is characterized by a body length of 505 to 723 µm (females) and 480 to 600 µm (males), lip region continuous by depression; 7 to 8 μm broad, 3 to 4 µm high, stylet length 7 to 9 µm or 1 to 1.3 times the lip region diameter, short postuterine sac of 4 to 6 μm long, lateral fields with five to six incisures; outer incisures crenated and inner incisures weakly crenated, excretory pore situated 90 to 100 µm from anterior end; functional males common in the population, with spicules 24 to 26 μm long. Tail of both sexes similar, almost straight and elongate-conoid. The new species resembles in morphology and morphometrics to four known species of the genus, namely P. apitica, P. minuta, P. myceliophaga, and P. sohailai. The results of phylogenetic analyses based on sequences of D2/D3 expansion region of 28S rRNA gene revealed this genus is polyphyletic in four different clades in Tylenchid.  相似文献   

20.
Heat shock protein 70 (HSP70) is a key member of the HSP family that contributes to a pre-cancerous environment; however, its role in lung cancer remains poorly understood. The present study used geranylgeranylacetone (GGA) to induce HSP70 expression, and transforming growth factor-β (TGF-β) was used to construct an epithelial-mesenchymal transition (EMT) model by stimulating A549 cells in vitro. Western Blot was performed to detect protein levels of NADPH oxidase 4 (NOX4) and the EMT-associated proteins E-cadherin and vimentin both before and after HSP70 expression. Cell morphological changes were observed, and the effect of HSP70 on cell migration ability was detected via the wound healing. The results demonstrated that GGA at 50 and 200 μmol/L could significantly induce HSP70 expression in A549 cells (P < 0.05). Furthermore, HSP70 induced by 200 μmol/L GGA significantly inhibited the changes of E-cadherin, vimentin, and cell morphology induced by TGF-β (P < 0.05), while HSP70 induced by 50 μmol/L GGA did not. The results of the wound healing assay indicated that 200 μmol/L GGA significantly inhibited A549 cell migration induced by TGF-β. Taken together, the results of the present study demonstrated that overexpression of HSP70 inhibited the TGF-β induced EMT process and changed the cell morphology and migratory ability induced by TGF-β in A549 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号