首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myeloid dendritic cells (mDCs) have long been thought to function as classical APCs for T cell responses. However, we demonstrate that influenza viruses induce rapid differentiation of human monocytes into mDCs. Unlike the classic mDCs, the virus-induced mDCs failed to upregulate DC maturation markers and were unable to induce allogeneic lymphoproliferation. Virus-induced mDCs secreted little, if any, proinflammatory cytokines; however, they secreted a substantial amount of chemoattractants for monocytes (MCP-1 and IP-10). Interestingly, the differentiated mDCs secreted type I IFN and upregulated the expression of IFN-stimulated genes (tetherin, IFITM3, and viperin), as well as cytosolic viral RNA sensors (RIG-I and MDA5). Additionally, culture supernatants from virus-induced mDCs suppressed the replication of virus in vitro. Furthermore, depletion of monocytes in a mouse model of influenza infection caused significant reduction of lung mDC numbers, as well as type I IFN production in the lung. Consequently, increased lung virus titer and higher mortality were observed. Taken together, our results demonstrate that the host responds to influenza virus infection by initiating rapid differentiation of circulating monocytes into IFN-producing mDCs, which contribute to innate antiviral immune responses.  相似文献   

2.
3.
The cellular immune response to primary influenza virus infection is complex, involving multiple cell types and anatomical compartments, and is difficult to measure directly. Here we develop a two-compartment model that quantifies the interplay between viral replication and adaptive immunity. The fidelity of the model is demonstrated by accurately confirming the role of CD4 help for antibody persistence and the consequences of immune depletion experiments. The model predicts that drugs to limit viral infection and/or production must be administered within 2 days of infection, with a benefit of combination therapy when administered early, and cytotoxic CD8 T cells in the lung are as effective for viral clearance as neutralizing antibodies when present at the time of challenge. The model can be used to investigate explicit biological scenarios and generate experimentally testable hypotheses. For example, when the adaptive response depends on cellular immune cell priming, regulation of antigen presentation has greater influence on the kinetics of viral clearance than the efficiency of virus neutralization or cellular cytotoxicity. These findings suggest that the modulation of antigen presentation or the number of lung resident cytotoxic cells and the combination drug intervention are strategies to combat highly virulent influenza viruses. We further compared alternative model structures, for example, B-cell activation directly by the virus versus that through professional antigen-presenting cells or dendritic cell licensing of CD8 T cells.Understanding how the immune system combats influenza virus infection and how the virus can affect the immune system is crucial to predicting and designing prophylactic and therapeutic strategies against the infection (58). Antigenic shift and antigenic drift alter the degree to which preexisting immunity can control the virus. These factors also influence whether different arms of the adaptive immune system can cross-react against new strains of the virus. For example, shifts of the hemagglutinin (HA) and neuraminidase (NA) protein sequences limit the ability of antibodies to neutralize new variants of the virus and may make cross-reactive T-cell responses to conserved viral proteins more important. Other viral proteins, such as NS1, affect both the induction of type I interferon as well as the susceptibility of infected cells to interferon-mediated inhibition of viral gene expression (43). The efficiencies of viral replication and cell-to-cell viral spread are altered by mutations in the viral matrix and polymerase genes, while the survival of infected cells can be altered by the viral PB1-F2 protein. These attributes are influenced by mutations in the viral matrix (50, 51) and polymerase (30, 69) genes, while the survival of infected cells can be altered by the viral PB1-F2 protein (17). The multigenic aspect of influenza virus pathogenesis makes experimental prediction difficult and time-consuming. Computer simulation tools would be useful to independently dissect the potential contribution and relative importance of each factor or to investigate unexpected scenarios that are difficult to replicate experimentally.Mathematical models and computer simulations have been widely used to study viral dynamics and immune responses to viral infections, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency viruses (SIV), lymphocytic choriomeningitis virus (19, 55, 60, 61), and influenza A virus (3, 7, 8, 13, 34, 35, 52). More complex compartmental models of the immune system (4, 23) and models incorporating differential delay equations (21, 48, 68) have been used to better reflect the time that cells reside in a particular compartment or the duration of transit between compartments. In this study, we sought to develop a two-compartment mathematical model to assess the individual contributions of antigen presentation and activation of naïve T and B cells by antigen-presenting cells (APC), CD4 T-cell help, CD8 T-cell-mediated cytotoxicity, B cells, and antibody to control influenza A virus (IAV) infection and to explore the influence of anatomical location. We developed a model which represented published experimental findings on primary influenza virus infection. More importantly, the model was used to explore alternative structures for interactions between virus and immune cells, for example, comparing virus kinetics when antigen delivery and immune cell priming occurred through direct interaction of virus and immune cells or through a cellular intermediate. The model predicts that, under some circumstances, changes affecting antigen presentation more strongly impacted viral kinetics than other viral or immune factors (28, 73, 75, 78). This model highlights the importance of the assumptions used to synthesize a model and gaps in our understanding of the immune response regulating primary influenza virus infection. We discuss the implications of these findings for future influenza virus research and theories of influenza virus virulence based on influenza virus-immune system interactions.  相似文献   

4.
5.
Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3′, and 4′ positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3′-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70–80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.  相似文献   

6.

Background

The effectiveness of single-drug antiviral interventions to reduce morbidity and mortality during the next influenza pandemic will be substantially weakened if transmissible strains emerge which are resistant to the stockpiled antiviral drugs. We developed a mathematical model to test the hypothesis that a small stockpile of a secondary antiviral drug could be used to mitigate the adverse consequences of the emergence of resistant strains.

Methods and Findings

We used a multistrain stochastic transmission model of influenza to show that the spread of antiviral resistance can be significantly reduced by deploying a small stockpile (1% population coverage) of a secondary drug during the early phase of local epidemics. We considered two strategies for the use of the secondary stockpile: early combination chemotherapy (ECC; individuals are treated with both drugs in combination while both are available); and sequential multidrug chemotherapy (SMC; individuals are treated only with the secondary drug until it is exhausted, then treated with the primary drug). We investigated all potentially important regions of unknown parameter space and found that both ECC and SMC reduced the cumulative attack rate (AR) and the resistant attack rate (RAR) unless the probability of emergence of resistance to the primary drug pA was so low (less than 1 in 10,000) that resistance was unlikely to be a problem or so high (more than 1 in 20) that resistance emerged as soon as primary drug monotherapy began. For example, when the basic reproductive number was 1.8 and 40% of symptomatic individuals were treated with antivirals, AR and RAR were 67% and 38% under monotherapy if p A = 0.01. If the probability of resistance emergence for the secondary drug was also 0.01, then SMC reduced AR and RAR to 57% and 2%. The effectiveness of ECC was similar if combination chemotherapy reduced the probabilities of resistance emergence by at least ten times. We extended our model using travel data between 105 large cities to investigate the robustness of these resistance-limiting strategies at a global scale. We found that as long as populations that were the main source of resistant strains employed these strategies (SMC or ECC), then those same strategies were also effective for populations far from the source even when some intermediate populations failed to control resistance. In essence, through the existence of many wild-type epidemics, the interconnectedness of the global network dampened the international spread of resistant strains.

Conclusions

Our results indicate that the augmentation of existing stockpiles of a single anti-influenza drug with smaller stockpiles of a second drug could be an effective and inexpensive epidemiological hedge against antiviral resistance if either SMC or ECC were used. Choosing between these strategies will require additional empirical studies. Specifically, the choice will depend on the safety of combination therapy and the synergistic effect of one antiviral in suppressing the emergence of resistance to the other antiviral when both are taken in combination.  相似文献   

7.
8.
9.
A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection.  相似文献   

10.
11.
Ferrets are the preferred animal model to assess influenza virus infection, virulence and transmission as they display similar clinical symptoms and pathogenesis to those of humans. Measures of disease severity in the ferret include weight loss, temperature rise, sneezing, viral shedding and reduced activity. To date, the only available method for activity measurement has been the assignment of an arbitrary score by a ‘blind’ observer based on pre-defined responsiveness scale. This manual scoring method is subjective and can be prone to bias. In this study, we described a novel video-tracking methodology for determining activity changes in a ferret model of influenza infection. This method eliminates the various limitations of manual scoring, which include the need for a sole ‘blind’ observer and the requirement to recognise the ‘normal’ activity of ferrets in order to assign relative activity scores. In ferrets infected with an A(H1N1)pdm09 virus, video-tracking was more sensitive than manual scoring in detecting ferret activity changes. Using this video-tracking method, oseltamivir treatment was found to ameliorate the effect of influenza infection on activity in ferret. Oseltamivir treatment of animals was associated with an improvement in clinical symptoms, including reduced inflammatory responses in the upper respiratory tract, lower body weight loss and a smaller rise in body temperature, despite there being no significant reduction in viral shedding. In summary, this novel video-tracking is an easy-to-use, objective and sensitive methodology for measuring ferret activity.  相似文献   

12.
The interferon-induced dynamin-like MxA protein has broad antiviral activity against many viruses, including orthomyxoviruses such as influenza A and Thogoto virus and bunyaviruses such as La Crosse virus. MxA consists of an N-terminal globular GTPase domain, a connecting bundle signaling element, and the C-terminal stalk that mediates oligomerization and antiviral specificity. We previously reported that the disordered loop L4 that protrudes from the compact stalk is a key determinant of antiviral specificity against influenza A and Thogoto virus. However, the role of individual amino acids for viral target recognition remained largely undefined. By mutational analyses, we identified two regions in the C-terminal part of L4 that contribute to an antiviral interface. Mutations in the proximal motif, at positions 561 and 562, abolished antiviral activity against orthomyxoviruses but not bunyaviruses. In contrast, mutations in the distal motif, around position 577, abolished antiviral activity against both viruses. These results indicate that at least two structural elements in L4 are responsible for antiviral activity and that the proximal motif determines specificity for orthomyxoviruses, whereas the distal sequence serves a conserved structural function.  相似文献   

13.
Influenza A viruses cause significant morbidity in swine, resulting in a substantial economic burden. Swine influenza virus (SIV) infection also poses important human public health concerns. Vaccination is the primary method for the prevention of influenza virus infection. Previously, we generated two elastase-dependent mutant SIVs derived from A/Sw/Saskatchewan/18789/02(H1N1): A/Sw/Sk-R345V (R345V) and A/Sw/Sk-R345A (R345A). These two viruses are highly attenuated in pigs, making them good candidates for a live-virus vaccine. In this study, the immunogenicity and the ability of these candidates to protect against SIV infection were evaluated in pigs. We report that intratracheally administrated R345V and R345A induced antigen-specific humoral and cell-mediated immunity characterized by increased production of immunoglobulin G (IgG) and IgA antibodies in the serum and in bronchoalveolar lavage fluid, high hemagglutination inhibition titers in serum, an enhanced level of lymphocyte proliferation, and higher numbers of gamma interferon-secreting cells at the site of infection. Based on the immunogenicity results, the R345V virus was further tested in a protection trial in which pigs were vaccinated twice with R345V and then challenged with homologous A/Sw/Saskatchewan/18789/02, H1N1 antigenic variant A/Sw/Indiana/1726/88 or heterologous subtypic H3N2 A/Sw/Texas/4199-2/9/98. Our data showed that two vaccinations with R345V provided pigs with complete protection from homologous H1N1 SIV infection and partial protection from heterologous subtypic H3N2 SIV infection. This protection was characterized by significantly reduced macroscopic and microscopic lung lesions, lower virus titers from the respiratory tract, and lower levels of proinflammatory cytokines. Thus, elastase-dependent SIV mutants can be used as live-virus vaccines against swine influenza in pigs.Swine influenza virus (SIV) is the causative pathogen of swine influenza, a highly contagious, acute respiratory viral disease of swine. The mortality of SIV-infected pigs is usually low, although morbidity may approach 100%. Swine influenza is characterized by sudden onset, coughing, respiratory distress, weight loss, fever, nasal discharge, and rapid recovery (38). SIV is a member of the influenza virus A genus in the Orthomyxoviridae family, and the virus has a genome consisting of eight segments of negative-sense single-stranded RNA (29). Epithelial cells in the swine respiratory tract have receptors for both avian and mammalian influenza viruses (13); thus, pigs could potentially serve as “mixing vessels” for the generation of new reassortant strains of influenza A virus that have pandemic capacity. There are a number of reports in which the direct transmission of influenza viruses from pigs to humans has been documented (6, 12, 52), and several of these cases have resulted in human fatalities (19, 35, 40, 53). Consequently, effective control of SIV would be beneficial to both humans and animals.Until 1998, classical H1N1 SIVs were the predominant isolates from pigs in the United States and Canada (5, 28). In 1997 to 1998, a dramatic change in the epidemiologic pattern of SIV began. Serological studies conducted by Olsen and colleagues in 1997 to 1998 detected a significant increase in H3-seropositive individuals, and H3N2 SIVs were isolated from pigs in both the United States and Canada (17, 54). Furthermore, reassortment between H3N2 viruses and classical H1N1 SIV resulted in the appearance of H1N2 reassortant viruses (14, 15). In addition to the isolation of H4N6 viruses, which are of duck origin, in pigs in Canada (16), wholly avian viruses of the H3N3 and H1N1 subtypes have also been isolated from Canadian pigs (18). In general, three major SIV subtypes exist, i.e., H1N1, H1N2, and H3N2, each of which has multiple genetic and antigenic variants circulating in North American swine populations (18, 28). The increased incidence of avian-like or human-like SIV reassortants raises concerns for public health and requires research devoted to the development of cross-protective SIV vaccines.Currently available swine influenza vaccines are based on inactivated whole virus of the H1N1 and H3N2 subtypes. Application of these vaccines reduces the severity of disease but does not provide consistent protection from infection (3, 22). In contrast to killed vaccines that are administered intramuscularly, intranasally administered live attenuated influenza vaccines (LAIV) induce an immune response at the site of natural infection. Therefore, an LAIV has the potential to induce broad humoral and cellular immune responses that could provide protection against antigenically different influenza viruses. LAIV based on attenuation of the virus by cold adaptation are available for humans (2) and horses (41). However, to date, no SIV LAIV are commercially available for use in swine in North America. Recent studies by Solorzano et al. showed that a mutant SIV with a truncated NS1 protein was highly attenuated in pigs (36). In addition, this SIV/NS1 LAIV was capable of stimulating a protective immune response against homologous SIVs and a partial protection against heterologous subtypic wild-type (WT) SIVs (31, 50). Stech and colleagues demonstrated that the conversion of a conserved cleavage site in the influenza virus hemagglutinin (HA) protein from a trypsin-sensitive site to an elastase-sensitive site results in in vivo attenuation of the influenza virus in mouse models (9, 37). Furthermore, these elastase-dependent LAIV were able to induce protective systemic and mucosal immune responses. Recently, we showed that two elastase-dependent SIVs derived from A/Sw/Saskatchewan/18789/02 (SIV/Sk02), R345V and R345A, are attenuated in their natural host, pigs (23). In the current study, we addressed the immunogenic and cross-protective abilities of these mutants.  相似文献   

14.
Antiserum specific for influenza A(2) neuraminidase was produced by immunization of rabbits with the purified enzyme which had been isolated by electrophoresis from the proteins of a detergent-disrupted A(0)A(2) influenza virus recombinant [X-7 (F1)]. This recombinant contained hemagglutinin of the A(0) subtype and A(2) neuraminidase. Antiserum to the isolated A(2) neuraminidase did not react in any of four serological tests with A(0) or A(2) subtype viruses that lacked the A(2) enzyme. In contrast, the antiserum inhibited the neuraminidase activity only of wild-type and recombinant viruses containing the A(2) enzyme, regardless of the nature of their hemagglutinin proteins. The antiserum caused hemagglutination-inhibition of some, but not all, viruses bearing the A(2) enzyme, and it reduced the plaque size or plaque number of all viruses tested that contained A(2) neuraminidase. In the chick embryo and in cell culture, low dilutions of antiserum reduced the yield of virus. True neutralization of virus in the chick embryo did not occur. We conclude that an antiserum specific for A(2) neuraminidase influenced the yield and release of virus from influenza virus-infected cells.  相似文献   

15.
Every year, influenza virus infection causes significant mortality and morbidity in human populations. Although egg-based inactivated viral vaccines are available, their effectiveness depends on the correct prediction of the circulating viral strains and is limited by the time constraint of the manufacturing process. Recombinant subunit vaccines are easier to manufacture with a relatively short lead time but are limited in their efficacy partly because the purified recombinant membrane proteins in the soluble form most likely do not retain their native membrane-bound structure. Nanodisc (ND) particles are soluble, stable, and reproducibly prepared discoid shaped nanoscale structures that contain a discrete lipid bilayer bound by two amphipathic scaffold proteins. Because ND particles permit the functional reconstitution of membrane/envelope proteins, we incorporated recombinant hemagglutinin (HA) from influenza virus strain A/New Caledonia/20/99 (H1N1) into NDs and investigated their potential to elicit an immune response to HA and confer immunity to influenza virus challenge relative to the commercial vaccines Fluzone and FluMist. HA-ND vaccination induced a robust anti-HA antibody response consisting of predominantly the immunoglobulin G1 (IgG1) subclass and a high hemagglutination inhibition titer. Intranasal immunization with HA-ND induced an anti-HA IgA response in nasal passages. HA-ND vaccination conferred protection that was comparable to that of Fluzone and FluMist against challenge with influenza virus strain A/Puerto Rico/8/1934 (H1N1).The influenza A virus-type viral genome encodes 11 proteins including hemagglutinin (HA) and neuraminidase (NA). HA is important in virus transmission and is also a major determinant of host range (16). NA prevents viral aggregation and helps in the release of new viruses from the infected cell (25). These glycoproteins are the principal antigens against which humoral immune responses of the host are directed. Vaccination has been accepted as the most effective method of preventing influenza virus. Current licensed vaccines against influenza virus include conventional inactivated virus vaccine, live-attenuated vaccine, or inactivated “split-virus” vaccines, all grown in embryonated chicken eggs. Influenza virus vaccines may contain residual egg-derived antigens, which is a risk factor for persons with hypersensitivity to eggs. In the case of live-attenuated vaccines that are delivered by the mucosal route, there are several potential safety concerns including the possibility that the vaccine strain could undergo spontaneous genetic change and in a rare case of simultaneous infection with another influenza virus could undergo antigenic shift. These factors are of special concern for children and the elderly, who are the primary populations at risk for influenza virus infection (9). Therefore, there is a continuing need for developing more efficacious and safer vaccines.Apart from licensed vaccines, a number of different vaccine formulations including soluble glycoproteins, virus-like particles, and subunit vaccines (6, 9, 14) with various efficacies have been developed. Recombinant glycoprotein vaccines offer many distinct advantages, including cost, the possibility of adapting them to rapidly changing strains within a short time, and independence from egg-based formulations. In experimental setups, recombinant HA (rHA) and recombinant NA have provided protection against lethal challenge to mice (18, 27). The safety, immunogenicity, and efficacy of trivalent rHA vaccines have been established (26), and a potential trivalent HA vaccine (FluBlok; Protein Sciences Corporation) is currently in phase III clinical trials.Some rHA-based vaccines elicit high titers of anti-HA antibodies. However, these antibodies do not necessarily possess a high capacity for virus neutralization. This apparent discrepancy likely results from the use of soluble HA protein that may not accurately mimic the native structure of the membrane-embedded glycoprotein on the viral envelope for immunization. This could result in a robust antibody response with a limited ability to react with “native epitopes.” This notion is supported by data from previously reported studies that indicated that antigens expressed in their native three-dimensional conformation can elicit a more effective antibody response than proteins in their nonnative forms (19). Therefore, we investigated whether rHA presented in a lipid-bilayer-embedded formulation would elicit a potent neutralizing antibody response.The Nanodisc (ND) system was developed as a novel method for functionally reconstituting membrane proteins into soluble nanoscale lipid bilayers (3, 4, 12, 22). NDs are robust, reproducible, and monodisperse discoidal particles 5.5 nm high and nominally 10 nm in diameter that are formed via a self-assembly process. ND particles contain two copies of an alpha-helical, amphipathic protein, termed membrane scaffold protein (MSP), which encircles a lipid bilayer in a “belt-like” fashion (Fig. (Fig.1a).1a). A mixture of phospholipids and MSP are placed in a nonequilibrium solubilized state, for instance, using detergent or high hydrostatic pressure, and the system is then allowed to approach equilibrium by the gentle removal of the perturbant. This initiates a process of self-assembly, wherein the phospholipids and MSP find each other and generate a discoidal phospholipid bilayer encircled by the MSP. The resulting nanostructures represent a highly stable and homogeneous population with an aqueous solubility in the millimolar range (11).Open in a separate windowFIG. 1.Construction of HA-NDs. (a) Schematic showing an ND particle that contains a phospholipid bilayer encircled by membrane scaffold proteins (left) (5) and the same ND particle with an embedded transmembrane protein (right) (17). (b) HA-ND assemblies were first purified by Ni2+ affinity chromatography. (Top left) Silver-stained SDS-PAGE showing flowthrough, wash, and elution of HA-ND assembly mix over a Ni-nitrilotriacetic acid column (FT1 and FT2 are flowthrough, and the eluate contains the eluted protein). Arrows show the positions of the 72-kDa HA band and the 25-kDa MSPs. (Top right) Anti-HA Western blotting of the same SDS-PAGE gel. Depending on the quality of purification, a certain fraction of full-length 72-kDa rHA (HA0) can exist as proteolytically cleaved HA1 (∼50-kDa) and HA2 (∼28-kDa) subunits. (Bottom left) Ni2+ column eluates were further purified by SEC. Silver-stained SDS-PAGE gel shows size-based fractionation of Ni2+ column eluate. The numbers at the bottom correspond to the fractions collected. The MSP amounts are largest at fractions 27 to 30, showing that empty NDs eluted at those fractions. (Bottom right) Anti-HA Western blotting of the same SDS-PAGE gel showing that HA-ND assemblies eluted mainly between fractions 18 and 26. (c) Elution profile of HA-ND following SEC separation. The elution times for protein standards used for calibration are indicated at the top. The control profile for empty NDs is superimposed. HA-ND assemblies have a shorter retention time than empty NDs. inj, injection. (d) HA-ND assemblies from different SEC fractions separate as discrete-sized molecules upon native PAGE separation. Silver staining (left) and anti-HA Western blotting (right) of native PAGE gels from size exclusion fractions show different HA polymers contained in NDs. Earlier fractions are rich in higher-polymeric forms of HA, while later fractions are richer in monomeric HA. Control HA was loaded in the last well to the right in both cases.The value of the ND self-assembly process is that one can simply and reproducibly incorporate membrane proteins into these structures. This is accomplished by including the membrane protein in the initial mixture of MSP, lipid, and detergent prior to the initiation of the self-assembly process. An incorporated membrane protein then finds itself in a native-like environment with stability and activity normally found in vivo. By using phospholipids with different chemical characteristics (charge, degree of unsaturation, and length of acyl chains), the bilayer environment can be optimized to accommodate functional requirements. Furthermore, larger scaffold proteins, which in turn create a larger-diameter particle, can be employed to incorporate multimers or membrane protein complexes. Numerous membrane proteins from the three major classes-integral, tethered, and embedded (including monomers and multimers)-in the lipid bilayer environment created by NDs have been studied (2-5, 8, 10, 13, 20, 23). Since the ND system creates a stable bilayer environment that mimics that encountered by a membrane protein in the cell membrane, membrane proteins display normal folding, native ligand binding kinetics, and intact signaling activity (1, 3, 5, 8, 10, 13, 17, 23).In this study, we successfully incorporated recombinant baculovirus-derived HA into NDs (HA-ND) and compared its efficacy to induce a relevant immune response and confer protection against influenza virus challenge with those of existing licensed vaccines by using a mouse model.  相似文献   

16.
线粒体不但是细胞内重要的能量提供者,而且在病毒感染后引起的细胞凋亡中扮演着极为重要的角色。新发现的线粒体抗病毒蛋白将线粒体与先天性免疫联系起来,这也意味着宿主免疫反应和细胞凋亡可能与线粒体密切相关,显示出线粒体在细胞内的重要作用,提示应加强对线粒体在抗病毒感染和治疗等方面作用的研究。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号