首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
NKX3.1是前列腺特异表达的同源盒基因,在前列腺癌的发生发展中起重要作用,而在前列腺癌进展中常会发生p53的基因突变.为研究两者之间的关系,构建NKX-3.1启动子(1 040bp)-荧光素酶报告基因重组质粒(pGL3-1040)及其缺失突变体,瞬时转染前列腺癌细胞LNCaP.通过荧光素酶表达活性分析,检测p53过表达对NKX3.1启动子活性的影响.结果表明:p53在LNCaP细胞中过表达可明显抑制NKX3.1启动子活性;RT-PCR及Western印迹检测p53过表达对NKX3.1表达的影响.结果表明,p53过表达可以明显抑制同源盒基因NKX3.1的表达.通过TRANSFAC软件分析,在NKX3.1基因上游-526至-507区存在一个p53反应元件的5′核心序列.缺失pGL3-1040中的p53反应元件核心序列并不能消除p53对NKX3.1启动子的抑制作用,表明p53不是通过p53反应元件直接抑制NKX3.1启动子活性.进一步通过5′缺失突变分析,发现NKX3.1启动子-140~+8 bp区仍受p53负调控.此148 bp区域中含有一个Sp1和一个CREB元件,瞬时共转染Sp1表达载体或CREB表达载体的结果表明,p53并不是通过与Sp1或CREB相互作用对NKX3.1启动子发挥抑制作用的.上述结果表明,p53过表达可以抑制同源盒基因NKX3.1启动子活性,下调NKX3.1基因的转录,其调控机制有待进一步研究.  相似文献   

2.
3.
4.
5.
6.
7.
8.
NKX3.1 is a prostate-specific homeobox gene related strongly to prostate development and prostate cancer. However, little is known about the mechanism for regulation of NKX3.1 in prostate cancer. With RT-PCR and western blot, we found that NKX3.1 expression was enhanced by over-expression of Sp1 at both the mRNA and protein levels in prostate cancer LNCaP cells. To identify the Sp1-elements in the promoter region of NKX3.1, a 521 bp-promoter of human NKX3.1 gene containing three possible Sp1-elements was cloned into the upstream of the luciferase reporter gene in pGL3-basic plasmid. With deletion mutation analysis, plasmid construction, EMSA and oligonucleotide decoy technique, two Sp1-elements which located between +29 to +43 and −60 to −46 of NKX3.1 gene were identified and proven to be functional elements. It will be important to further study on the functions and the regulatory mechanisms of Sp1 element in NKX3.1 gene expression.  相似文献   

9.
10.
11.
A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA).  相似文献   

12.
NKX3.1 is an androgen-regulated prostate-specific homeobox gene that is thought to play an important role in prostate development and cancerogenesis. NKX3.1 acts as a tumor suppressor gene specifically in the prostate. Up-regulation of NKX3.1 gene offers a promising gene therapy for prostate cancer. The decoy strategy has been developed and is considered a useful tool for regulating gene expression and gene therapy. In our previous studies, we identified a 20 bp inhibitory element upstream of the NKX3.1 promoter.In this study, we focused on using the 20 bp inhibitory element decoy to block negative regulation of the NKX3.1 gene and to up-regulate NKX3.1 expression using synthetic double-stranded oligodeoxynucleotides of the 20 bp inhibitory element. We found in an electrophoretic mobility shift assay experiment that the 20 bp inhibitory decoy presented competitive binding to a specific binding protein of the 20 bp inhibitory element in prostate cancer cell line LNCaP. In luciferase reporter gene assays, we found that the 20 bp inhibitory decoy could enhance NKX3.1 promoter activity, and RT-PCR and Western blot analysis revealed that NKX3.1 expression was up-regulated effectively by the transfection with the 20 bp inhibitory decoy. Furthermore,cell proliferation was inhibited by up-regulated NKX3.1 expression induced by the 20 bp inhibitory decoy.  相似文献   

13.
NKX3.1 is a prostate-specific homeobox gene related to prostate development and prostate cancer. In this work, we aimed to identify precisely the functional cis-element in the 197 bp region (from -1032 to -836 bp) of the NKX3.1 promoter (from -1032 to +8 bp), which was previously identified to present positive regulatory activity on NKX3.1 expression, by deletion mutagenesis analysis and electrophoretic mobility shift assay (EMSA). A 16 bp positive cis-element located between -920 and -905 bp upstream of the NKX3.1 gene was identified by deletion mutation analysis and proved to be a functional positive cis-element by EMSA. It will be important to further study the functions and regulatory mechanisms of this positive cis-element in NKX3.1 gene expression.  相似文献   

14.
Abrus precatorius is highly regarded as a universal panacea in the herbal medicine with diverse pharmacological activity spectra. This experimental study on the mechanism of the anticancer activity of A. precatorius leaf extracts, may offer new evidence for A. precatorius in the treatment of breast cancer in clinical practice. Cell death was determined by using MTT assay. Further analyses were carried out by doing DNA laddering, PARP cleavage, FACS, semi-quantitative RT-PCR and detection of cellular reactive oxygen species (ROS) by DCFDA assay. A. precatorius showed very striking inhibition on MDA-MB-231 cells. MTT assay showed more than 75 % inhibition of the cells and treated cells indicated visible laddering pattern with thick compact band. PARP cleavage produced 89 kDa cleavage product which was associated with apoptosis. Flow cytometer exhibited a sub-G0/G1 peak as an indicative of apoptosis. mRNA expression level of apoptosis-related genes p21 and p53 was markedly increased in cells treated with the extract as compared to control. The up-regulation of p21 and p53 may be the molecular mechanisms by which A. precatorius extract which induces apoptosis. An increase in the concentration of A. precatorius extract does not generate ROS, instead it reduces ROS formation in MDA-MB-231 cells, as evident from the shift in fluorescence below untreated control. This is the first report showing that A. precatorius leaf extract exhibits a growth inhibitory effect by induction of apoptosis in MDA-MB-231 cells. Our results contribute towards validation of the A. precatorius extract as a potentially effective chemopreventive or therapeutic agent against breast cancer.  相似文献   

15.
NKX3.1, a prostate-specific homeobox gene, plays an important role in prostate cancer and usually functions as tumor suppressor gene. Previously we have demonstrated that forced expression of NKX3.1 reduced cell growth and invasion in prostate cancer cell line PC-3. Presently, we investigated the effect of NKX3.1 on the sensitivity of the prostate cancer cells to apoptosis inducer tumor necrosis factor-α (TNF-α) and cycloheximide (CHX). PC-3 cells were transfected with NKX3.1 expression plasmid (pcDNA3.1-NKX3.1) and LNCaP cells were transfected with siRNA expression plasmid (pRNAT-RNAi1) targeting NKX3.1. The cell morphology and apoptotic rate were analyzed by Hoechst 33342 staining and Flow Cytometry in absence or presence of TNF-α and CHX. The activity of caspase-3 was determined using DEVD-pNA as substrate. Simultaneously, the effect of NKX3.1 on caspase-3 expression was detected using RT-PCR and Western blot. The results showed that ectopic expression of NKX3.1 promoted TNF-α/CHX-induced apoptosis in PC-3 cells, whereas knockdown of NKX3.1 protected LNCaP cells from apoptosis induced by TNF-α/CHX. The pro-apoptosis activity of NKX3.1 might partially contribute to its elevation of caspase-3 expression and activity. Manipulating NKX3.1 expression should be a promising therapeutic strategy for treating both androgen-dependent and androgen-independent prostate cancer.  相似文献   

16.
Loss of NKX3.1 is an early and consistent event in prostate cancer and is associated with increased proliferation of prostate epithelial cells and poor prognosis. NKX3.1 stability is regulated post‐translationally through phosphorylation at multiple sites by several protein kinases. Here, we report the paradoxical stabilization of the prostate‐specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim‐1 in prostate cancer cells. Pharmacologic Pim‐1 inhibition using the small molecule inhibitor CX‐6258 decreased steady state levels and half‐life of NKX3.1 protein but mRNA was not affected. This effect was reversed by inhibition of the 26S‐proteasome, demonstrating that Pim‐1 protects NKX3.1 from proteasome‐mediated degradation. Mass spectrometric analyses revealed Thr89, Ser185, Ser186, Ser195, and Ser196 as Pim‐1 phospho‐acceptor sites on NKX3.1. Through mutational analysis, we determined that NKX3.1 phosphorylation at Ser185, Ser186, and within the N‐terminal PEST domain is essential for Pim‐1‐mediated stabilization. Further, we also identified Lys182 as a critical residue for NKX3.1 stabilization by Pim‐1. Pim‐1‐mediated NKX3.1 stabilization may be important in maintaining normal cellular homeostasis in normal prostate epithelial cells, and may maintain basal NKX3.1 protein levels in prostate cancer cells. J. Cell. Biochem. 114: 1050–1057, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
The arylamine N-acetyltransferase 2 (NAT2) enzymes detoxify a wide range of naturally occurring xenobiotics including carcinogens and drugs. Point mutations in the NAT2 gene result in the variant alleles M1 (NAT2 *5A), M2 (NAT2*6A), M3 (NAT2*7) and M4 (NAT2 *14A) from the wild-type WT (NAT2 *4) allele. The current study was aimed at screening genetic polymorphisms of NAT2 gene in 49 lung cancer patients, 54 colorectal cancer patients and 99 cancer-free controls, using PCR-RFLP. There were significant differences in allele frequencies between lung cancer patients and controls in the WT, M2 and M3 alleles (p < 0.05). However, only M2 and M3 allele frequencies were different between colorectal cancer patients and controls (p < 0.05). There was a marginal significant difference in the distribution of rapid and slow acetylator genotypes between lung cancer patients and controls (p = 0.06 and p = 0.05, respectively), but not between colorectal cancer patients and controls (p = 1.0 and p = 0.95, respectively). Risk of lung cancer development was found to be lower in slow acetylators [odds ratio (OR): 0.51, 95% confidence interval (95% CI): 0.25, 1.02, p-value = 0.07]. No effect was observed in case of colorectal cancer. Our results showed that NAT2 genotypes and phenotypes might be involved in lung cancer but not colorectal cancer susceptibility in Jordan.  相似文献   

20.
Various constituents in clinical specimens, particularly feces, can inhibit the PCR assay and lead to false-negative results. To ensure that negative results of a diagnostic PCR assay are true, it should be properly monitored by an inhibition control. In this study, a cloning vector harboring a modified target DNA sequence (≈375 bp) was constructed to be used as a competitive internal amplification control (IAC) for a conventional PCR assay that detects ≈550 bp of the Cryptosporidium oocyst wall protein (COWP) gene sequence in human feces. Modification of the native PCR target was carried out using a new approach comprising inverse PCR and restriction digestion techniques. IAC was included in the assay, with the estimated optimum concentration of 1 fg per reaction, as duplex PCR. When applied on fecal samples spiked with variable oocysts counts, ≈2 oocysts were theoretically enough for detection. When applied on 25 Cryptosporidium-positive fecal samples of various infection intensities, both targets were clearly detected with minimal competition noticed in 2-3 samples. Importantly, both the analytical and the diagnostic sensitivities of the PCR assay were not altered with integration of IAC into the reactions. When tried on 180 randomly collected fecal samples, 159 were Cryptosporidium-negatives. Although the native target DNA was absent, the IAC amplicon was obviously detected on gel of all the Cryptosporidium-negative samples. These results imply that running of the diagnostic PCR, inspired with the previously developed DNA extraction protocol and the constructed IAC, represents a useful tool for Cryptosporidium detection in human feces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号