共查询到20条相似文献,搜索用时 15 毫秒
1.
Jane Molofsky Richard Durrett Jonathan Dushoff David Griffeath Simon Levin 《Theoretical population biology》1999,55(3):270-282
In sessile organisms such as plants, interactions occur locally so that important ecological aspects like frequency dependence are manifest within local neighborhoods. Using probabilistic cellular automata models, we investigated how local frequency-dependent competition influenced whether two species could coexist. Individuals of the two species were randomly placed on a grid and allowed to interact according to local frequency-dependent rules. For four different frequency-dependent scenarios, the results indicated that over a broad parameter range the two species could coexist. Comparisons between explicit spatial simulations and the mean-field approximation indicate that coexistence occurs over a broader region in the explicit spatial simulation. 相似文献
2.
The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand) has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013), and in particular in the anterior intraparietal cortex (AIP). To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta) how different frequency bands of the local field potential (LFP) in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1–13Hz, 13–30Hz, 30–60Hz, and 60–100Hz, respectively). Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach) information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses. 相似文献
3.
Vinck M Battaglia FP Womelsdorf T Pennartz C 《Journal of computational neuroscience》2012,33(1):53-75
An important tool to study rhythmic neuronal synchronization is provided by relating spiking activity to the Local Field Potential (LFP). Two types of interdependent spike-LFP measures exist. The first approach is to directly quantify the consistency of single spike-LFP phases across spikes, referred to here as point-field phase synchronization measures. We show that conventional point-field phase synchronization measures are sensitive not only to the consistency of spike-LFP phases, but are also affected by statistical dependencies between spike-LFP phases, caused by e.g. non-Poissonian history-effects within spike trains such as bursting and refractoriness. To solve this problem, we develop a new pairwise measure that is not biased by the number of spikes and not affected by statistical dependencies between spike-LFP phases. The second approach is to quantify, similar to EEG-EEG coherence, the consistency of the relative phase between spike train and LFP signals across trials instead of across spikes, referred to here as spike train to field phase synchronization measures. We demonstrate an analytical relationship between point-field and spike train to field phase synchronization measures. Based on this relationship, we prove that the spike train to field pairwise phase consistency (PPC), a quantity closely related to the squared spike-field coherence, is a monotonically increasing function of the number of spikes per trial. This derived relationship is exact and analytic, and takes a linear form for weak phase-coupling. To solve this problem, we introduce a corrected version of the spike train to field PPC that is independent of the number of spikes per trial. Finally, we address the problem that dependencies between spike-LFP phase and the number of spikes per trial can cause spike-LFP phase synchronization measures to be biased by the number of trials. We show how to modify the developed point-field and spike train to field phase synchronization measures in order to make them unbiased by the number of trials. 相似文献
4.
Repetitive transcranial magnetic stimulation (rTMS) holds promise as a non-invasive therapy for the treatment of neurological disorders such as depression, schizophrenia, tinnitus, and epilepsy. Complex interdependencies between stimulus duration, frequency and intensity obscure the exact effects of rTMS stimulation on neural activity in the cortex, making evaluation of and comparison between rTMS studies difficult. To explain the influence of rTMS on neural activity (e.g. in the motor cortex), we use a neuronal network model. The results demonstrate that the model adequately explains experimentally observed short term effects of rTMS on the band power in common frequency bands used in electroencephalography (EEG). We show that the equivalent local field potential (eLFP) band power depends on stimulation intensity rather than on stimulation frequency. Additionally, our model resolves contradictions in experiments. 相似文献
5.
《Electromagnetic biology and medicine》2013,32(3):267-279
Responses of single mechanoreceptor crayfish neurons to weak extremely low frequency magnetic fields were studied over a wide range of frequencies from 0.001 to 100 Hz, and magnetic fields from 1 to 400 fiT. Observed shifts of neuron impulse activity were weak and variable. They were usually characterized by a slow increase or decrease of spike frequency developing during tens of minutes with markedly variable latencies. Frequency and amplitude “action spectra” were complex, nonlinear, and included several bands (frequency and amplitude “windows”). Neuron response probabilities (if response type and field amplitudes were excluded from consideration) were maximal at 0.001, 0.3, 3, and 60 Hz. They were also maximal at 5, 20, 50, and 300 jaT if field frequencies were not taken into account. Minimal neuron response probabilities were observed at 0.03, 0.8-2, 11-15, and 100 Hz and 1, 10, 30, and 100 /iT, respectively. 相似文献
6.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications. 相似文献
7.
8.
Alberto Mazzoni Henrik Lindén Hermann Cuntz Anders Lansner Stefano Panzeri Gaute T. Einevoll 《PLoS computational biology》2015,11(12)
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. 相似文献
9.
High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS), is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP), the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson’s disease (PD). We performed simultaneous multi-site local field potential (LFP) recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective), low-frequency (LF, 15 Hz; ineffective) and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR), ventroanterior thalamus (VA), primary motor cortex (M1), and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic effects of GPi DBS for conditions such as PD and dystonia. 相似文献
10.
We demonstrate that human electrophysiological recordings of the local field potential (LFP) from intracranial electrodes, acquired from a variety of cerebral regions, show a ubiquitous 1/f2 scaling within the power spectrum. We develop a quantitative model that treats the generation of these fields in an analogous way to that of electronic shot noise, and use this model to specifically address the cause of this 1/f2 Brownian noise. The model gives way to two analytically tractable solutions, both displaying Brownian noise: 1) uncorrelated cells that display sharp initial activity, whose extracellular fields slowly decay in time and 2) rapidly firing, temporally correlated cells that generate UP-DOWN states. 相似文献
11.
The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. 相似文献
12.
Summary Functional magnetic resonance imaging (fMRI) data sets are large and characterized by complex dependence structures driven by highly sophisticated neurophysiology and aspects of the experimental designs. Typical analyses investigating task‐related changes in measured brain activity use a two‐stage procedure in which the first stage involves subject‐specific models and the second‐stage specifies group (or population) level parameters. Customarily, the first‐level accounts for temporal correlations between the serial scans acquired during one scanning session. Despite accounting for these correlations, fMRI studies often include multiple sessions and temporal dependencies may persist between the corresponding estimates of mean neural activity. Further, spatial correlations between brain activity measurements in different locations are often unaccounted for in statistical modeling and estimation. We propose a two‐stage, spatio‐temporal, autoregressive model that simultaneously accounts for spatial dependencies between voxels within the same anatomical region and for temporal dependencies between a subject's estimates from multiple sessions. We develop an algorithm that leverages the special structure of our covariance model, enabling relatively fast and efficient estimation. Using our proposed method, we analyze fMRI data from a study of inhibitory control in cocaine addicts. 相似文献
13.
Kazuya Tanaka Hokuto Iwatani Yoshio Takahashi Aya Sakaguchi Kazuya Yoshimura Yuichi Onda 《PloS one》2013,8(11)
Surface soils, under various land uses, were contaminated by radionuclides that were released by the Fukushima Daiichi Nuclear Power Plant accident. Because paddy fields are one of the main land uses in Japan, we investigated the spatial distribution of radiocesium and the influence of irrigation water in a paddy field during cultivation. Soil core samples collected at a paddy field in Fukushima showed that plowing had disturbed the original depth distribution of radiocesium. The horizontal distribution of radiocesium did not show any evidence for significant influence of radiocesium from irrigation water, and its accumulation within the paddy field, since the original amount of radiocesium was much larger than was added into the paddy field by irrigation water. However, it is possible that rainfall significantly increases the loading of radiocesium. 相似文献
14.
Alberto Mazzoni Stefano Panzeri Nikos K. Logothetis Nicolas Brunel 《PLoS computational biology》2008,4(12)
Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment. 相似文献
15.
The frequency of homologous recombination is believed to be a linear function of the length (N bp) of homology between DNAs. Here, the N intercept is believed to be determined by a threshold length below which some physical constraint is effective. In the mammalian gene targeting systems, however, the frequency depends more steeply than linearly on the homology length. To explain both the linear dependence and the steeper dependence, we propose a model where the branch point of a reaction intermediate is assumed to ``walk randomly' along the homologous region until it is processed. The intermediate is assumed to be destroyed if the branch point ever reaches either end of the homology. In this model, the length dependence is governed by a parameter, h, which is defined as efficiency of processing of the intermediate and reflects unlikelihood of the destruction at either end of the homology. We find that the frequency is proportional to N(3) for smaller N and is a linear function of N for larger N. Where the shift from the N(3) dependence to the linear dependence takes place is determined by the parameter h. The range of N showing the N(3) dependence becomes narrower as h becomes larger. The dependence steeper than linear dependence, which is observed not only in the mammalian gene targeting system but also in bacteriophage T4, Escherichia coli and yeast systems, agrees well with the predicted N(3) dependence. The N intercept is determined not by physical (or structural) constraints but only by the parameter h in this model. 相似文献
16.
17.
TRP通道与信号转导 总被引:8,自引:0,他引:8
TRP(transient receptor potential)通道是一类在外周和中枢神经系统分布很广泛的通道蛋白.到目前为止,有超过30个TRP通道家族成员在哺乳动物中被克隆.TRP通道均为六次跨膜蛋白,其N末端和C末端均在胞内,由第五和第六跨膜结构域共同构成非选择性阳离子孔道.这些通道可被许多种因素调节,包括温度、渗透压、pH值、机械力,以及一些内、外源性配体和细胞内信号分子.TRP通道家族包含七个亚族.目前,它们最公认的功能是介导感觉信号的传递,其他功能包括调节细胞钙平衡和影响发育等. 相似文献
18.
19.
Abstract The electrostatic potential of B-DNA is calculated on its surface envelope for two homopolymeric base pair sequences using models representing the effects of both counterion binding and of aqueous solution. The influence of these two factors on the resulting potentials is established and the significance of calculations which omit such effects is discussed. 相似文献
20.