共查询到20条相似文献,搜索用时 15 毫秒
1.
Tol2 transposon-mediated transgenesis in Xenopus tropicalis 总被引:1,自引:0,他引:1
Hamlet MR Yergeau DA Kuliyev E Takeda M Taira M Kawakami K Mead PE 《Genesis (New York, N.Y. : 2000)》2006,44(9):438-445
The diploid frog Xenopus tropicalis is becoming a powerful developmental genetic model system. Sequencing of the X. tropicalis genome is nearing completion and several labs are embarking on mutagenesis screens. We are interested in developing insertional mutagenesis strategies in X. tropicalis. Transposon-mediated insertional mutagenesis, once used exclusively in plants and invertebrate systems, is now more widely applicable to vertebrates. The first step in developing transposons as tools for mutagenesis is to demonstrate that these mobile elements function efficiently in the target organism. Here, we show that the Medaka fish transposon, Tol2, is able to stably integrate into the X. tropicalis genome and will serve as a powerful tool for insertional mutagenesis strategies in the frog. 相似文献
2.
Recombinant Tol2 transposase with activity in Xenopus embryos 总被引:1,自引:0,他引:1
Shibano T Takeda M Suetake I Kawakami K Asashima M Tajima S Taira M 《FEBS letters》2007,581(22):4333-4336
The Tol2 transposon system is a useful gene transduction technique, but the injection of mRNA is not sufficiently effective in Xenopus embryos to express Tol2 transposase (Tol2TP). To overcome this, we bacterially synthesized recombinant Tol2TP (rTol2TP) protein and showed that rTol2TP efficiently excised the Tol2 element from an injected donor plasmid in Xenopus embryos. Furthermore, injected embryos exhibited uniform and ubiquitous expression of an EGFP reporter gene placed within the Tol2 element. Importantly, size-exclusion chromatography suggests that rTol2TP forms a tetramer, which differs from the reported hexamer formed by Hermes transposase, although both belong to the same hAT family. The use of rTol2TP may facilitate efficient gene transduction in Xenopus, and the biochemical characterization of Tol2TP. 相似文献
3.
Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis 总被引:2,自引:0,他引:2
The Tol2 transposable element from the medaka fish belong to the hAT family of transposons. In the previous studies, we have identified an autonomous member of this element, which encodes a fully functional transposase, and have shown that it can catalyze transposition in the zebrafish germ lineage. To date, the Tol2 element is the only natural transposon in vertebrates from which an autonomous member has been identified. We report here transposase-dependent excision of the Tol2 element in Xenopus laevis and Xenopus (Silurana) tropicalis embryos. We coinjected a plasmid DNA containing a nonautonomous Tol2 element and the transposase mRNA synthesized in vitro into two-cell-stage embryos, and analyzed DNA extracted from the injected embryos by polymerase chain reaction (PCR). We demonstrated that the Tol2 element could be excised from the plasmid DNA in both X. laevis and X. tropicalis only when it was coinjected with the transposase mRNA. In most cases, a complete loss of the Tol2 sequence was accompanied by addition of a short DNA sequence to the target sequence, indicating that transposase-dependent excision occurred. While these footprints were characteristic to those created upon excision of transposons of the hAT family, the additional bases found in Xenopus were longer and their structures were more complicated than those detected upon excision in zebrafish. This may reflect differences in the activities of host factors involved in either transposition, repair, or both between fish and frog. Our present study suggests that the Tol2 transposon system should be used as a novel genetic tool to develop transgenesis and mutagenesis methods in Xenopus. 相似文献
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
An algorithm is proposed for extracting regulatory signals from DNA sequences. The algorithm complexity is nearly quadratic. The results of testing the algorithm on artificial and natural sequences are presented. 相似文献
14.
15.
Synexpression groups are genetic modules composed of genes that share both a complex expression pattern and the biological process in which they function. Here we investigate the regulation of BMP4 synexpression by studying the enhancers of bambi, smad7 and vent2 in Xenopus. We find that a BMP4 synexpression promoter module is compact and (i) requires direct BMP responsiveness through Smad and Smad-cofactor binding motifs, (ii) may contain an evolutionary conserved BMP-responsive element, bre7 (TGGCGCC), that is crucial for expression of bambi and smad7 and is highly prognostic for novel BMP-responsive enhancers (BREs); and (iii) requires a narrow window of BMP inducibility, because minor enhancement or reduction of BMP responsiveness abolishes synexpression. Furthermore, we used a bioinformatic model to predict in silico 13 novel BREs, and tested five of them that were found in the id1-4 genes. The results highlight that in vivo analysis is required to reveal the physiological, spatio-temporal regulation of BMP-responsive genes. 相似文献
16.
17.
18.
19.
The regulation of gene expression represents a specific process which has different structural and functional requirements in different groups of organisms. It is thus assumed that regulatory sequences of eucaryotes cannot be recognized in procaryotes. This assumption is of interest for risk assessments of the environmental impact of deliberate release experiments with genetically modified organisms. In order to analyse the extent of heterologous gene expression caused by the transfer of plant-specific regulatory sequences into bacteria, we constructed fusions between plant-specific regulatory sequences and the coding regions of the luxAB genes for the luciferase of the bioluminescent bacterium Vibrio harveyi, transferred the fusions into different bacterial species and measured the luminescence to quantify the expression of the luciferase genes. The regulatory sequences investigated included (a) the 35S promoter of the Cauliflower mosaic virus, (b) the B33 promoter of a class I patatin gene of potatoes, (c) the promoter of the ST-LS1 gene of potatoes and (d) the promoter of the rolC gene of Agrobacterium rhizogenes. We could show that in addition to the 35S promoter, which has already been described as being recognized in Escherichia coli, the sequences containing the B33 and the ST-LS1 promoters are recognized in bacteria. Luciferase gene expression promoted by the sequence with the ST-LS1 promoter could be observed in E. coli, Yersinia enterocolitica and Agrobacterium tumefaciens. Comparison of the luminescence caused by fusions between luxAB and different promoters on the chromosome and on an endogenous plasmid of Y. enterocolitica demonstrated that the level of the heterologous gene expression caused by the fragment with the ST-LS1 promoter was within the range of gene expression levels caused by endogenous promoters of Y. enterocolitica. 相似文献