首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
《Biophysical journal》2022,121(5):808-819
The expression of the lac operon of E. coli is subject to positive feedback during growth in the presence of gratuitous inducers, but its existence in the presence of lactose remains controversial. The key question in this debate is: Do the lactose enzymes, Lac permease and β-galactosidase, promote accumulation of allolactose? If so, positive feedback exists since allolactose does stimulate synthesis of the lactose enzymes. Here, we addressed the above question by developing methods for determining the intracellular allolactose concentration as well as the kinetics of enzyme induction and dilution. We show that, during lac induction in the presence of lactose, the intracellular allolactose concentration increases with the lactose enzyme level, which implies that lactose enzymes promote allolactose accumulation, and positive feedback exists. We also show that, during lac repression in the presence of lactose + glucose, the intracellular allolactose concentration decreases with the lactose enzyme levels, which suggests that, under these conditions, the positive feedback loop turns in the reverse direction. The induction and dilution rates derived from the transient data show that the positive feedback loop is reversed due to a radical shift of the steady-state induction level. This is formally identical to the mechanism driving catabolite repression in the presence of TMG + glucose.  相似文献   

13.
14.
The epistatic interactions that underlie evolutionary constraint have mainly been studied for constant external conditions. However, environmental changes may modulate epistasis and hence affect genetic constraints. Here we investigate genetic constraints in the adaptive evolution of a novel regulatory function in variable environments, using the lac repressor, LacI, as a model system. We have systematically reconstructed mutational trajectories from wild type LacI to three different variants that each exhibit an inverse response to the inducing ligand IPTG, and analyzed the higher-order interactions between genetic and environmental changes. We find epistasis to depend strongly on the environment. As a result, mutational steps essential to inversion but inaccessible by positive selection in one environment, become accessible in another. We present a graphical method to analyze the observed complex higher-order interactions between multiple mutations and environmental change, and show how the interactions can be explained by a combination of mutational effects on allostery and thermodynamic stability. This dependency of genetic constraint on the environment should fundamentally affect evolutionary dynamics and affects the interpretation of phylogenetic data.  相似文献   

15.
16.
The genus Salmonella includes many pathogens of great medical and veterinary importance. Bacteria belonging to this genus are very closely related to those belonging to the genus Escherichia. lacZYA operon and lacI are present in Escherichia coli, but not in Salmonella enterica. It has been proposed that Salmonella has lost lacZYA operon and lacI during evolution. In this study, we have investigated the physiological and evolutionary significance of the absence of lacI in Salmonella enterica. Using murine model of typhoid fever, we show that the expression of LacI causes a remarkable reduction in the virulence of Salmonella enterica. LacI also suppresses the ability of Salmonella enterica to proliferate inside murine macrophages. Microarray analysis revealed that LacI interferes with the expression of virulence genes of Salmonella pathogenicity island 2. This effect was confirmed by RT-PCR and Western blot analysis. Interestingly, we found that SBG0326 of Salmonella bongori is homologous to lacI of Escherichia coli. Salmonella bongori is the only other species of the genus Salmonella and it lacks the virulence genes of Salmonella pathogenicity island 2. Overall, our results demonstrate that LacI is an antivirulence factor of Salmonella enterica and suggest that absence of lacI has facilitated the acquisition of virulence genes of Salmonella pathogenicity island 2 in Salmonella enterica making it a successful systemic pathogen.  相似文献   

17.
This work is a continuation from another study previously published in this journal. Both the former and the present works are dedicated to investigating the bistable behavior of the lac operon in Escherichia coli from a mathematical modeling point of view. In the previous article, we developed a detailed mathematical model that accounts for all of the known regulatory mechanisms in this system, and studied the effect of inducing the operon with lactose instead of an artificial inducer. In this article, the model is improved to account, in a more detailed way, for the interaction of the repressor molecules with the three lac operators. A recently discovered cooperative interaction between the CAP molecule (an activator of the lactose operon) and Operator 3 (which influences DNA folding) is also included in this new version of the model. The growth rate dependence on the rate of energy entering the bacteria (in the form of transported glucose molecules and of metabolized lactose molecules) is also considered. A large number of numerical experiments is carried out with this improved model. The results are discussed in regard to the bistable behavior of the lactose operon. Special attention is paid to the effect that a variable growth rate has on the system dynamics.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号