首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Seventeen recombinant viruses were generated by a reverse genetic technique to elucidate the pathogenicity of highly pathogenic avian influenza viruses (HPAIVs) in chickens. The recombinant viruses generated possessed hemagglutinin (HA) and neuraminidase (NA) genes from an HPAIV. Other segments were combinations of the genes from an HPAIV and two low-pathogenic avian influenza viruses (LPAIVs) derived from chicken (LP) and wild bird (WB). Exchange of whole internal genes from an HPAIV with those of an LPAIV resulted in a significant extension of the survival time following intranasal infection of the chickens with the recombinants. Survival analysis demonstrated that the exchange of a gene segment affected survivability of the chickens with statistical significance. The analysis revealed three groups of recombinants with various gene constellations that depended upon the survivability of the infected chickens. Recombinants where the PA gene was exchanged from LP to WB in the LP gene background, LP (W/PA), did not kill any chickens. LP (W/PA) replicated less efficiently both in vitro and in vivo, suggesting that the intrinsic replication ability of LP (W/PA) affects pathogenicity; however, such a correlation was not seen for the other recombinants. Microarray analysis of the infected chicken lungs indicated that the expression of 7 genes, CD274, RNF19B, OASL, ZC3HAV1 [corrected] , PLA2G6, GCH1, and USP18, correlated with the survivability of the chickens infected (P < 0.01). Further analysis of the functions of these genes in chickens would aid in the understanding of host gene responses following fatal infections by HPAIVs.  相似文献   

2.
Recent evidences have demonstrated that the presence of low pathogenic avian influenza viruses (LPAIV) may play an important role in host ecology and transmission of avian influenza viruses (AIV). While some authors have clearly demonstrated that LPAIV can mutate to render highly pathogenic avian influenza viruses (HPAIV), others have shown that their presence could provide the host with enough immunological memory to resist re-infections with HPAIV. In order to experimentally study the role of pre-existing host immunity, chickens previously infected with H7N2 LPAIV were subsequently challenged with H7N1 HPAIV. Pre-infection of chickens with H7N2 LAPIV conferred protection against the lethal challenge with H7N1 HPAIV, dramatically reducing the viral shedding, the clinical signs and the pathological outcome. Correlating with the protection afforded, sera from chickens primed with H7N2 LPAIV reacted with the H7-AIV subtype in hemagglutination inhibition assay and specifically with the N2-neuraminidase antigen. Conversely, subsequent exposure to H5N1 HPAIV resulted in a two days-delay on the onset of disease but all chickens died by 7 days post-challenge. Lack of protection correlated with the absence of H5-hemagglutining inhibitory antibodies prior to H5N1 HPAIV challenge. Our data suggest that in naturally occurring outbreaks of HPAIV, birds with pre-existing immunity to LPAIV could survive lethal infections with HA-homologous HPAIV but not subsequent re-infections with HA-heterologous HPAIV. These results could be useful to better understand the dynamics of AIV in chickens and might help in future vaccine formulations.  相似文献   

3.
The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.  相似文献   

4.
Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.  相似文献   

5.
Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV.  相似文献   

6.
Animal movements may contribute to the spread of pathogens. In the case of avian influenza virus, [migratory] birds have been suggested to play a role in the spread of some highly pathogenic strains (e.g. H5N1, H5N8), as well as their low pathogenic precursors which circulate naturally in wild birds. For a better understanding of the emergence and spread of both highly pathogenic (HPAIV) and low pathogenic avian influenza virus (LPAIV), the potential effects of LPAIVs on bird movement need to be evaluated. In a key host species, the mallard Anas platyrhynchos, we tested whether LPAIV infection status affected daily local (< 100 m) and regional (> 100 m) movements by comparing movement behaviour 1) within individuals (captured and sampled at two time points) and 2) between individuals (captured and sampled at one time point). We fitted free‐living adult males with GPS loggers throughout the autumn LPAIV infection peak, and sampled them for LPAIV infection at logger deployment and at logger removal on recapture. Within individuals, we found no association between LPAIV infection and daily local and regional movements. Among individuals, daily regional movements of LPAIV infected mallards in the last days of tracking were lower than those of non‐infected birds. Moreover, these regional movements of LPAIV infected birds were additionally reduced by poor weather conditions (i.e. increased wind and/or precipitation and lower temperatures). Local movements of LPAIV infected birds in the first days of tracking were higher when temperature decreased. Our study thus demonstrates that bird‐assisted dispersal rate of LPAIV may be lower on a regional scale than expected on the basis of the movement behaviour of non‐infected birds. Our study underlines the importance of understanding the impact of pathogen infection on host movement in order to assess its potential role in the emergence and spread of infectious diseases.  相似文献   

7.
Highly pathogenic avian influenza virus (HPAIV) of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05) isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.  相似文献   

8.
Clade 2.2 Eurasian-lineage H5N1 highly pathogenic avian influenza viruses (HPAIVs) were first detected in Qinghai Lake, China, in 2005 and subsequently spread through Asia, Europe, and Africa. Importantly, these viruses carried a lysine at amino acid position 627 of the PB2 protein (PB2 627K), a known mammalian adaptation motif. Previous avian influenza virus isolates have carried glutamic acid in this position (PB2 627E), commonly described to restrict virus polymerase function in the mammalian host. We sought to examine the effect of PB2 627K on viral maintenance in the avian reservoir. Viruses constructed by reverse genetics were engineered to contain converse PB2 627K/E mutations in a Eurasian H5N1 virus (A/turkey/Turkey/5/2005 [Ty/05]) and, for comparison, a historical pre-Asian H5N1 HPAIV that naturally bears PB2 627E (A/turkey/England/50-92/1991 [50-92]). The 50-92 PB2 627K was genetically unstable during virus propagation, resulting in reversion to PB2 627E or the accumulation of the additional mutation PB2 628R and/or a synonymous mutation from an A to a G nucleotide at nucleotide position 1869 (PB2 A1869G). Intriguingly, PB2 628R and/or A1869G appeared to improve the genetic stability of 50-92 PB2 627K. However, the replication of 50-92 PB2 627K in conjunction with these stabilizing mutations was significantly restricted in experimentally infected chickens, where reversion to PB2 627E occurred. In contrast, no significant effects on viral fitness were observed for Ty/05 PB2 627E or 627K in in vitro or in vivo experiments. Our observations suggest that PB2 627K is supported in Eurasian-lineage viruses; in contrast, PB2 627K carries a significant fitness cost in the historical pre-Asian 50-92 virus.  相似文献   

9.
The potential role of wild birds as carriers of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 is still a matter of debate. Consecutive or simultaneous infections with different subtypes of influenza viruses of low pathogenicity (LPAIV) are very common in wild duck populations. To better understand the epidemiology and pathogenesis of HPAIV H5N1 infections in natural ecosystems, we investigated the influence of prior infection of mallards with homo- (H5N2) and heterosubtypic (H4N6) LPAIV on exposure to HPAIV H5N1. In mallards with homosubtypic immunity induced by LPAIV infection, clinical disease was absent and shedding of HPAIV from respiratory and intestinal tracts was grossly reduced compared to the heterosubtypic and control groups (mean GEC/100 µl at 3 dpi: 3.0×102 vs. 2.3×104 vs. 8.7×104; p<0.05). Heterosubtypic immunity induced by an H4N6 infection mediated a similar but less pronounced effect. We conclude that the epidemiology of HPAIV H5N1 in mallards and probably other aquatic wild bird species is massively influenced by interfering immunity induced by prior homo- and heterosubtypic LPAIV infections.  相似文献   

10.
One of the major causes of death in highly pathogenic avian influenza virus (HPAIV) infection in chickens is acute induction of pro‐inflammatory cytokines (cytokine storm), which leads to severe pathology and acute mortality. DCs and respiratory tract macrophages are the major antigen presenting cells that are exposed to mucosal pathogens. We hypothesized that chicken DCs are a major target for induction of cytokine dysregulation by H5N1 HPAIV. It was found that infection of chicken peripheral blood monocyte‐derived dendritic cells (chMoDCs) with H5N1 HPAIV produces high titers of progeny virus with more rounding and cytotoxicity than with H9N2 LPAIV. Expression of maturation markers (CD40, CD80 and CD83) was weaker in both H5N1 and H9N2 groups than in a LPS control group. INF‐α, ‐β and ‐γ were significantly upregulated in the H5N1 group. Pro‐inflammatory cytokines (IL‐1β, TNF‐α and IL‐18) were highly upregulated in early mid (IL‐1), and late (IL‐6) phases of H5N1 virus infection. IL‐8 (CXCLi2) mRNA expression was significantly stronger in the H5N1 group from 6 hr of infection. TLR3, 7, 15 and 21 were upregulated 24 hr after infection by H5N1 virus compared with H9N2 virus, with maximum expression of TLR 3 mRNA. Similarly, greater H5N1 virus‐induced apoptotic cell death and cytotoxicity, as measured by terminal deoxynucleotidyl transferase‐mediated dUTP nick end labeling and lactate dehydrogenase assays, respectively, were found. Thus, both H5N1 and H9N2 viruses evade the host immune system by inducing impairment of chMoDCs maturation and enhancing cytokine dysregulation in H5N1 HPAIV‐infected cells.  相似文献   

11.
A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV) in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV). We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA) diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event), as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.  相似文献   

12.
13.
On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016–2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs.
  相似文献   

14.
15.
The molecular basis of pathogenicity of H5N1 highly pathogenic avian influenza (HPAI) viruses in chickens remains largely unknown. H5N1 A/chicken/Yamaguchi/7/2004 virus (CkYM7) replicates rapidly in macrophages and vascular endothelial cells in chickens, causing sudden death without fever or gross lesions, while H5N1 A/duck/Yokohama/aq10/2003 virus (DkYK10) induces high fever, severe gross lesions, and a prolonged time to death, despite the 98% amino acid identity between the two viruses. To explore the molecular basis of this difference in pathogenicity, a series of eight single-gene reassortant viruses from these HPAI viruses were compared for pathogenicity in chickens. Two reassortants possessing the NP or PB2 gene from DkYK10 in the CkYM7 background reduced pathogenicity compared to other reassortants or CkYM7. Inversely, reassortants possessing the NP or PB2 gene of CkYM7 in the DkYK10 background (rgDkYK-PB2(Ck), rgDkYK-NP(Ck)) replicated quickly and reached higher titers than DkYK10, accompanied by more rapid and frequent apoptosis of macrophages. The rgDkYK-NP(Ck) and rgDkYK-PB2(Ck) reassortants also replicated more rapidly in chicken embryo fibroblasts (CEFs) than did rgDkYK10, but replication of these viruses was similar to that of CkYM7 and DkYK10 in duck embryo fibroblasts. A comparison of pathogenicities of seven rgDkYK10 mutants with a single amino acid substitution in NP(Dk) demonstrated that valine at position 105 in the NP(Ck) was responsible for the increased pathogenicity in chickens. NP(Ck), NP(105V), and PB2(Ck) enhanced the polymerase activity of DkYK10 in CEFs. These results indicate that both NP and PB2 contribute to the high pathogenicity of the H5N1 HPAI viruses in chickens, and valine at position 105 of NP may be one of the determinants for adaptation of avian influenza viruses from ducks to chickens.  相似文献   

16.
Surveillance for highly pathogenic avian influenza viruses (HPAIV) in wild birds is logistically demanding due to the very low rates of virus detection. Serological approaches may be more cost effective as they require smaller sample sizes to identify exposed populations. We hypothesized that antigenic differences between classical Eurasian H5 subtype viruses (which have low pathogenicity in chickens) and H5N1 viruses of the Goose/Guangdong/96 H5 lineage (which are HPAIV) may be used to differentiate populations where HPAIVs have been circulating, from those where they have not. To test this we performed hemagglutination inhibition assays to compare the reactivity of serum samples from wild birds in Mongolia (where HPAIV has been circulating, n = 1,832) and Europe (where HPAIV has been rare or absent, n = 497) to a panel of reference viruses including classical Eurasian H5 (of low pathogenicity), and five HPAIV H5N1 antigens of the Asian lineage A/Goose/Guangdong/1/96. Antibody titres were detected against at least one of the test antigens for 182 Mongolian serum samples (total seroprevalence of 0.10, n = 1,832, 95% adjusted Wald confidence limits of 0.09–0.11) and 25 of the European sera tested (total seroprevalence of 0.05, n = 497, 95% adjusted Wald confidence limits of 0.03–0.07). A bias in antibody titres to HPAIV antigens was found in the Mongolian sample set (22/182) that was absent in the European sera (0/25). Although the interpretation of serological data from wild birds is complicated by the possibility of exposure to multiple strains, and variability in the timing of exposure, these findings suggest that a proportion of the Mongolian population had survived exposure to HPAIV, and that serological assays may enhance the targeting of traditional HPAIV surveillance toward populations where isolation of HPAIV is more likely.  相似文献   

17.
To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP (I)109(T)). By analyzing viruses constructed by the reverse-genetic method, we established that the NP (I)109(T) substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP (I)109(T) substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP (I)109(T) substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP (I)109(T) mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains.  相似文献   

18.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

19.
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses.  相似文献   

20.
Wildlife pathogens can alter host fitness. Low pathogenic avian influenza virus (LPAIV) infection is thought to have negligible impacts on wild birds; however, effects of infection in free‐living birds are largely unstudied. We investigated the extent to which LPAIV infection and shedding were associated with body condition and immune status in free‐living mallards (Anas platyrhynchos), a partially migratory key LPAIV host species. We sampled mallards throughout the species' annual autumn LPAIV infection peak, and we classified individuals according to age, sex, and migratory strategy (based on stable hydrogen isotope analysis) when analyzing data on body mass and five indices of immune status. Body mass was similar for LPAIV‐infected and noninfected birds. The degree of virus shedding from the cloaca and oropharynx was not associated with body mass. LPAIV infection and shedding were not associated with natural antibody (NAbs) and complement titers (first lines of defense against infections), concentrations of the acute phase protein haptoglobin (Hp), ratios of heterophils to lymphocytes (H:L ratio), and avian influenza virus (AIV)‐specific antibody concentrations. NAbs titers were higher in LPAIV‐infected males and local (i.e., short distance) migrants than in infected females and distant (i.e., long distance) migrants. Hp concentrations were higher in LPAIV‐infected juveniles and females compared to infected adults and males. NAbs, complement, and Hp levels were lower in LPAIV‐infected mallards in early autumn. Our study demonstrates weak associations between infection with and shedding of LPAIV and the body condition and immune status of free‐living mallards. These results may support the role of mallards as asymptomatic carriers of LPAIV and raise questions about possible coevolution between virus and host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号